Skip to main content

Unsupervised Learning for Robust Texture Segmentation

  • Chapter
Performance Characterization in Computer Vision

Part of the book series: Computational Imaging and Vision ((CIVI,volume 17))

Abstract

Robustness of computer vision algorithms requires stability of the computed results against variations in the input data caused by noise or modeling uncertainty. In unsupervised image processing tasks like texture segmentation the extracted image partition should provide reliable model estimates of the different texture types. These texture models represent typical properties of textures and they should not depend on the specific texture data available to the algorithm. Instead, the performance of the algorithms should be invariant to within-class texture fluctuations and sample fluctuations which are omnipresent in noisy images. Segmentation solutions have to generalize from the given texture samples to new instances of the same texture types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • de Bruijn, N.G. (1958) Asymptotic Methods in Analysis, North-Holland Publishing Co. (repr. Dover 1981 ), Amsterdam.

    Google Scholar 

  • Buhmann, J.M. (1998) Empirical Risk Approximation: An Induction Principle for Unsupervised Learning, IAI-TR 98–3, Institut für Informatik III, University of Bonn.

    Google Scholar 

  • Buhmann, J.M. and Kühnel, H. (1993) Vector Quantization with Complexity Costs, IEEE Transactions on Information Theory, 39: 1133–1145.

    Article  MATH  Google Scholar 

  • Devroye, L. and Györfi, L. (1985) Nonparametric Density Estimation: The L 1 View,John Wiley and Sons.

    Google Scholar 

  • Fisher, R.A. (1922) On the mathematical foundation of theoretical statistics, Philos. Trans. Roy. Soc. London (Ser. A), 222: 309–368.

    Article  MATH  Google Scholar 

  • Fisher, R.A. (1952) Contributions to Mathematical Statistics, John Wiley and Sons, New York.

    Google Scholar 

  • Geman, D., Geman, S., Graffigne, C. and Dong, P. (1990) Boundary Detection by Constrained Optimization, IEEE PA MI, 12 (7): 609–628.

    Article  Google Scholar 

  • Hofmann, T. and Puzicha, J. (1998) Statistical Models for Co-occurrence Data, AI-MEMO 1625, MIT.

    Google Scholar 

  • Hofmann, T., Puzicha, J. and Buhmann, J.M. (1998) Unsupervised Texture Segmentation in a Deterministic Annealing Framework, IEEE PA MI, 20 (8): 803–818.

    Article  Google Scholar 

  • Jain, A. and Farrokhnia, F. (1991) Unsupervised Texture Segmentation using Gabor Filters, Pattern Recognition, 24 (12): 1167–1186.

    Article  Google Scholar 

  • Mao, J. and Jain, A. (1992) Texture classification and segmentation using multiresolution simultaneous autoregressive models, Pattern Recognition, 25: 173–188.

    Article  Google Scholar 

  • Pereira, F., Tishby, N. and Lee, L. (1993) Distributional clustering of English words, 30th Annual Meeting of the Association for Computational Linguistics, Columbus, Ohio, 183–190.

    Google Scholar 

  • Puzicha, J., Hofmann, T. and Buhmann, J.M. (1999) Histogram Clustering for Unsuper- vised Segmentation and Image Retrieval, Pattern Recognition Letters, 20 (9): 899–909.

    Article  Google Scholar 

  • Puzicha, J. and Buhmann, J.M. (2000) Multiscale Annealing for Grouping and Unsupervised Texture Segmentation, Computer Vision and Image Understanding,in press.

    Google Scholar 

  • Rose, K., Gurewitz, E. and Fox, G. (1990) A deterministic annealing approach to clustering, Pattern Recognition Letters, 11: 589–594.

    Article  MATH  Google Scholar 

  • Shi, J. and Malik, J. (1997) Normalized Cuts and Image Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’97), 731–737.

    Google Scholar 

  • van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes, New York, Berlin, Heidelberg, Springer-Verlag.

    Google Scholar 

  • Vapnik, V. and Chervonenkis, A. (1971) On the uniform convergence of relative Frequencies of Events to their Probabilities, Theory of Probability and its Applications, 16 (2): 264–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Vapnik, V. (1982) Estimation of Dependencies based on Empirical Data, Springer Series in Statistics, Springer.

    Google Scholar 

  • Vapnik, V. (1995) The Nature of Statistical Learning Theory, Springer Verlag.

    MATH  Google Scholar 

  • Wald, A. (1947) Sequential Analysis, John Wiley and Sons, New York, first edition.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buhmann, J.M., Puzicha, J. (2000). Unsupervised Learning for Robust Texture Segmentation. In: Klette, R., Stiehl, H.S., Viergever, M.A., Vincken, K.L. (eds) Performance Characterization in Computer Vision. Computational Imaging and Vision, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9538-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9538-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5487-6

  • Online ISBN: 978-94-015-9538-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics