Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 22))

Abstract

Invariant features remain unchanged when the data is transformed according to a group action. This property can be useful for applications in which a geometric transformation like a change in an object’s position and orientation is irrelevant and one is only interested in the object’s intrinsic features. We discuss features for the group of Euclidean motion (both for gray-valued or multichannel 2D and 3D data) that are calculated by an integration over the transformation group (Haar integrals). However, their computation time, even though it is of linear complexity, is too high for applications that either require a fast response (e.g. image retrieval) or have big data set sizes (e.g. 3D tomographic data). The original idea described here is to estimate the features via a Monte-Carlo method instead of carrying out a deterministic computation, thus obtaining complexity 0(1). For a typical 3D application this results in speedup factors of 105–106. Error bounds for the method are theoretically derived and experimentally verified. Beside the reduction in computation time, the method is less sensitive to numerical errors which can be a problem of the deterministic calculation especially for large data sets. An image retrieval application demonstrates the potential of the presented features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Burkhardt and S. Siggelkow. Invariant features in pattern recognition — fundamentals and applications. In C. Kotropoulos and I. Pitas, editors, Nonlinear Model-Based Image/Video Processing and Analysis, pages 269–307. John Wiley Sons, 2001.

    Google Scholar 

  2. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. IEEE Computer, 28 (9): 23–32, September 1995.

    Article  Google Scholar 

  3. J.M. Hammersley and D.0 Handscomb. Monte Carlo Methods. Methuen Co/John Wiley Sons, 1965.

    Google Scholar 

  4. A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, Inc., 3. edition, 1991.

    Google Scholar 

  5. M. Schael. Invariant greyscale features for 3D sensordata. Internal Report 9/98, Albert-Ludwigs-Universität, Freiburg, Institut für Informatik, December 1998.

    Google Scholar 

  6. M. Schael and H. Burkhardt. Automatic detection of errors on textures using invariant grey scale features and polynomial classifiers. In M. Pietikäinen and H. Kauppinen, editors, Workshop on Texture Analysis in Machine Vision, pages 45–51, Oulu, Finland, June 1999.

    Google Scholar 

  7. M. Schael and S. Siggelkow. Invariant grey-scale features for 3D sensor-data. In Proceedings of the International Conference on Pattern Recognition, volume 2, pages 531–535, Barcelona, Spain, September 2000.

    Google Scholar 

  8. B. Schiele. Object Recognition Using Multidimensional Receptive Field Histograms - English translation. PhD thesis, Institut National Polytechnique de Grenoble, 1997.

    Google Scholar 

  9. B. Schiele and J.L. Crowley. Object recognition using multidimensional receptive field histograms. In B. Buxton and R. Cipolla, editors, Computer Vision — ECCV’96, volume I, pages 610–619. Springer, 1996.

    Google Scholar 

  10. H. Schulz-Mirbach. Invariant features for gray scale images. In G. Sagerer, S. Posch, and F. Kummert, editors, 17. DAGM–Symposium “Mustererkennung”, pages 1–14, Bielefeld, 1995. Reihe Informatik aktuell, Springer.

    Google Scholar 

  11. S. Siggelkow and H. Burkhardt. Image retrieval based on local invariant features. In Proceedings of the LASTED International Conference on Signal and Image Processing (SIP) 1998,pages 369–373, Las Vegas, Nevada, USA, October 1998. TASTED.

    Google Scholar 

  12. S. Siggelkow and M. Schael. Fast estimation of invariant features. In W. Förstner, J.M. Buhmann, A. Faber, and P. Faber, editors, Mustererkennung, DAGM 1999, Informatik aktuell, pages 181–188, Bonn, September 1999. Springer.

    Google Scholar 

  13. M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer Vision, 7 (1): 11–32, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Siggelkow, S., Burkhardt, H. (2001). Fast Invariant Feature Extraction for Image Retrieval. In: Veltkamp, R.C., Burkhardt, H., Kriegel, HP. (eds) State-of-the-Art in Content-Based Image and Video Retrieval. Computational Imaging and Vision, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9664-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9664-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5863-8

  • Online ISBN: 978-94-015-9664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics