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Foreword

Hardware/software codesign means to achieve system-level design objectives by
leveraging the synergy between hardware and software through their concurrent
design. Codesign has been practiced in various ways since the inception of digital
systems. The specification of instruction-set architectures enabled the concurrent
development of hardware and software as well as the creation of high-level
languages and compilers. Grace Hopper was indeed a pioneer of codesign in the
early 1950s with the design of portable languages (i.e., machine-independent),
which led to the development of COBOL and of modern programming languages.

Within about 70 years of computer science and engineering, various em-
bodiments of abstractions, programmability, and hardware have given different
meanings to hardware/software codesign. The renewed interest on this topic in the
last two decades relates to the use of structured design methodologies and tools
for hardware and software design. Thus, electronic systems design automation had
to embrace hardware/software codesign as one of its major tasks and objectives.
The formalization of the related design problems enabled synthesis and verification
of hardware/software systems through the development of computer-aided design
methods and tools.

However, it is our opinion that a sound system design methodology must start
by capturing the design specifications at the highest level of abstraction and then
proceed toward an efficient implementation by subsequent refinement steps. The
partition of the design into hardware and software is indeed a consequence of
decisions taken at a higher level of abstraction. The critical decisions are about
the architecture of the system (processors, buses, hardware accelerators, memories,
and so on) that will carry on the computation and communication tasks associated
with the overall specification of the design. This design process is segmented into
a series of similar steps. The principles at the basis of each step consist of hiding
unnecessary details of an implementation, summarizing the important parameters of
the implementation in an abstract model, and limiting the design space exploration
to a set of potential platform instances. The design process is a meet-in-the-
middle approach where the refinement from specification toward implementation is
matched against a library of components whose models are abstractions of possible
implementations.
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vi Foreword

This was indeed the basis for the development of a design methodology that
goes under the name of platform-based design where the steps outlined above have
been formalized wherever possible. This methodology includes the development of
hardware and the related software when the architectural decisions have been made
and the design tasks have been mapped to the components of the architecture. A task
that is mapped into hardware can then be synthesized with the appropriate tools in
parallel to the software development that takes place when the mapping process has
allocated the task to a programmable component. Note also that in this framework,
it is rather clear that according to the available programmable components, different
software design processes can be developed. In fact, programming a microprocessor
is quite different than programming a DSP or a special purpose processor.

The first step in the design process is then capturing a set of specifications or
requirements on the functionality and the architecture of the design. These will
guide the design process through the refinement steps. Requirements are in general
denotational statements about what the system is supposed to do. For example, if
we are to design a special purpose math processor that computes the solution of
nonlinear algebraic equations, the functional requirement would be stated as:

Find x such that F .x/ D 0;

where no algorithm to accomplish this task has been chosen. The choice of the al-
gorithm is already a refinement step in the design task. This example underlines that
requirements are abstract statements about what the design has to accomplish. Some
of the requirements may be given in terms of the properties of an implementation
but still in abstracted form. For example,

The system has to consume no more than 1kW of power.

Of course this is a constraint that encompasses the entire design space from
functionality to final implementation, and while in the first steps of the architecture
selection, the power consumption can be estimated, and it will have to be verified
at the final implementation where the physics of the solution will be known. The
design space exploration is determined in part by these requirements.

In addition to the requirements, often a set of desirable features of the design
can be stated. In this case, the mathematical formalism is a function that can be
either minimized or maximized. Then the refinement steps take the form of an
optimization problem where the objective functions are optimized in the presence
of complex constraints.

Often the design process of interest has already been given in terms of high-
level functionality where some design decisions have been taken. Using the example
above, we may be asked to implement the Newton–Raphson procedure, a choice for
the algorithm to be used to meet the requirement. This is given in terms of behavior,
i.e., an operational description at the appropriate level of abstraction.

Once the behavior has been selected and described, then it is time to determine
an architecture to implement this behavior that optimizes the goal function(s)
and satisfies the constraints. The architecture may be developed anew or obtained
combining elements in a library of available components or a combination of both
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whereby library elements are combined with virtual components that have to be
designed from scratch.

In the design process, synthesis steps are intertwined with verification steps
that check whether the constraints are satisfied, the functionality is correctly
implemented, and the design is feasible.

This handbook covers extensively many topics specific to hardware/software
codesign intended as system design as described above, namely, modeling, design
and optimization, validation and verification, as well as application areas. Modeling
has been a key design technology for capturing system-level aspects: it is achieved
today via specialized languages and graphical formalisms. The underlying seman-
tics of these representations is key to the application of rigorous methods to capture
the real intent of the design and to offer a framework where properties of the design
can be assessed. At the same time, the expressive power of the language is important
to serve a wide variety of designers and design applications. For example, within
general-purpose languages, SystemC – a class library with hardware semantics –
has shown to be a viable extension to C++ to capture hardware components in an
object-oriented fashion.

System architectures have changed significantly over the last two decades, to
exploit the growth and diversification of the underlying semiconductor technol-
ogy. As a result of the limited growth of clock operational frequencies and the
wide availability of devices due to downscaling, multiprocessor architectures with
significant on-chip memory (or low-latency off-chip memory) are dominating the
market. Indeed, multiprocessing fits the need of realizing systems with limited
energy consumption, thus avoiding thermal and dark silicon issues. Codesign in a
multiprocessing environment provides major challenges, such as exploration of the
design space and of parametric choices that can maximize the return of distributed
software applications. Design and optimization require often cross-layer techniques
that can span various modeling abstractions and operate on the tuning of various
system aspects concurrently.

Much research emphasis on memory architectures has been fueled both by the
need to handle big data “in proximity” as well as by the availability of novel memory
technologies including their physical stacking. It is important to remark that this
problem is not only a hardware design problem, as the potential beneficial use of
memory hierarchies affects system and software design. By the same token, on-chip
communication has evolved to networks-on-chips (NoCs), which encompass various
structured interconnect schemes leveraging data packetization and routing. NoC
design within multiprocessing systems requires the use of specific design techniques
to match hardware structures realizing the network architecture to their operational
protocols that are often programmable and specified in software.

Many design tools have been proposed to synthesize, partition, and optimize
systems. In the recent years, the use of programmable processor cores (e.g., ARM)
as black boxes within multiprocessing systems has led to a specific focus on both
memory and communication synthesis and optimization. Conversely, the search for
energy-performance optimal computational engines has led to application-specific
instruction-set processors. Such processors occupy a limited but strategic part of
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the computing product spectrum and pose a key codesign problem. Indeed, the
definition of an instruction set has been the fulcrum of codesign techniques since the
invention of the digital computer. Thus, the possibility of designing and optimizing
the instruction set can be viewed as searching for an optimum position of this
fulcrum to balance the hardware and software cost and performance.

The selection of the functionalities to implement in hardware and of the ones in
software is a system design issue that precedes HW/SW codesign. Indeed, system
design can be characterized as function/architecture codesign, where function is
what we wish to realize and architecture is how we are going to implement the func-
tionality. As described above, architecture can be defined as the functional level as
well. In this case, we decompose a function into a network of subfunctions. Each of
this subfunction can be further decomposed until we decide to allocate the leaves of
the functional decomposition to components of a hardware architecture. The hard-
ware architecture consists of components such as processors, memories, sensors,
actuators, communication entities, and specialized hardware components. Once a
block of functionality is assigned to a programmable component, its implementation
will be a software program running onto that component. If it is assigned to a
specialized hardware, then its implementation will be a set of IP blocks, and we have
a HW/SW codesign problem at hand. System design is where important decisions
are taken and where it is of paramount importance to consider available components
to maximize reuse. Platform-based design has been a major step forward in
conceiving HW/SW systems that enabled the use of synthesis and verification tools
with high efficiency. Indeed, a platform is a restriction of the design space.

Methods and tools for software synthesis and optimization have led to the
automatic rewriting of specification in terms of the best primitives to be used by
a processor. For example, ARM processors benefit from using guarded instructions,
and making them explicit in software improves the compiler performance. Software
analysis – in terms of execution time – is extremely important to quantify and bound
delay in system design, especially in view of satisfying timing constraints for task
executions. Thus, software timing analysis and verification is a key task of HW/SW
codesign.

Validating system design is the most important task of all, since most digital
systems are required to satisfy safety and dependability constraints. An important
area is the verification of formal models that abstract parts – if not the entirety –
of digital systems. Formal verification is based on choosing specific properties and
checking if they are satisfied in all operational instances. Functional and timing
behavior are cornerstones of verification. Often such properties are shown to hold
with subsystems, and thus system composability is a key asset in proving correctness
by construction. Needless to say, few systems are composable in a straightforward
way, and this motivates the large research effort in verification. Large systems are
often validated by semiformal techniques or by broader but weaker techniques
such as simulation, emulation, and prototyping. The inherent weakness of these
techniques is in asserting properties that are valid under a wide set of environmental
conditions. Unfortunately, when systems fail, they often fail under unusual operating
conditions.
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Codesign is practiced differently in various application domains. This book
covers examples such as datacenter, automotive system, video/image processing,
and cyber-physical system design. The peculiarities of these domains in terms of
requirements and objectives are reflected in the various ways of applying codesign
modeling abstraction as well as synthesis, optimization, and verification methods.

Overall, this handbook presents a broad set of techniques that show the inherent
maturity of the state of the art in hardware/software codesign.

University of California at Berkeley Alberto L. Sangiovanni-Vincentelli
USA
November 2016

Institute of Electrical Engineering Giovanni De Micheli
EPFL, Switzerland
November 2016



Preface

Hardware/software (HW/SW) codesign was first introduced as a new design
methodology for SoCs (systems-on-chip) in the early 1990s to design hardware
and software concurrently with the goal to reduce the design time and cost of such
systems. After more than 25 years of incessant research and development, it is now
regarded as a de facto standard, and the term has become serving as an umbrella for
methodologies to design complex electronic systems, even distributed embedded
systems. HW/SW codesign covers the full spectrum of system design issues from
initial behavior specification to final implementation. Codesign methodologies also
include modeling the system behavior independently of the system architecture at a
high level and exploring the design space of system architecture at the early design
stage. For fast design space exploration, it is necessary to estimate the system per-
formance and resource requirements. HW/SW cosimulation enables us to develop
software before hardware implementations become available. Finally, cosynthesis
denoting the process of automatically synthesizing hardware components as well
as software from a given specification for implementation on a target platform and
including also the interfaces for communication between hardware components and
processors belongs to the key problems attacked by codesign.

In spite of its significance and usefulness, we discovered that it is quite difficult
to understand and learn about its benefits and full impact on real system design,
particularly because there did not exist any book or reference on HW/SW codesign
until the time of writing this book. Thus, it is our great pleasure to edit this
handbook, quenching the thirst for the reference. In this book, we present to you
the core issues of hardware/software codesign and key techniques in the design
flow. In addition, selected codesign tools and design environments are described as
well as case studies that demonstrate the usefulness of HW/SW codesign. This book
will be updated regularly to follow the progress of design techniques and introduce
commercial as well as research design tools available for our readers. It is meant to
serve as a reference not only to interested researchers and engineers in the field but

xi
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equally to students. We hope you all will grasp the wide spectrum of subjects that
belong to HW/SW codesign and get most benefits out of it for your system design
and related optimization problems.

Department of Computer Science and Engineering Soonhoi Ha
Seoul National University
Gwanak-ro 1, Gwanak-gu
Seoul, Korea
June 2017

Department of Computer Science Jürgen Teich
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Cauerstr. 11
Erlangen, Germany
June 2017
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WCET Worst-Case Execution Time
WCRT Worst-Case Response Time
WL Word Line
WSDF Windowed Synchronous Data Flow
WSDL Web Service Definition Language
WSN Wireless Sensor Network
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema
XSLT Extensible Stylesheet Language Transformations
YML Y-chart Modeling Language
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