
Handbook of Hardware/Software Codesign

Soonhoi Ha • Jürgen Teich
Editors

Handbook of
Hardware/Software
Codesign

With 575 Figures and 56 Tables

123

Editors
Soonhoi Ha
Department of Computer
Science and Engineering
Seoul National University
Seoul, Korea

Jürgen Teich
Department of Computer Science
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Erlangen, Germany

ISBN 978-94-017-7266-2 ISBN 978-94-017-7267-9 (eBook)
ISBN 978-94-017-7268-6 (print and electronic bundle)
https://doi.org/10.1007/978-94-017-7267-9

Library of Congress Control Number: 2017947685

© Springer Science+Business Media Dordrecht 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media B.V.
The registered company address is: Van Godewijckstraat 30, 3311 GX Dordrecht, The Netherlands

https://doi.org/10.1007/978-94-017-7267-9

Foreword

Hardware/software codesign means to achieve system-level design objectives by
leveraging the synergy between hardware and software through their concurrent
design. Codesign has been practiced in various ways since the inception of digital
systems. The specification of instruction-set architectures enabled the concurrent
development of hardware and software as well as the creation of high-level
languages and compilers. Grace Hopper was indeed a pioneer of codesign in the
early 1950s with the design of portable languages (i.e., machine-independent),
which led to the development of COBOL and of modern programming languages.

Within about 70 years of computer science and engineering, various em-
bodiments of abstractions, programmability, and hardware have given different
meanings to hardware/software codesign. The renewed interest on this topic in the
last two decades relates to the use of structured design methodologies and tools
for hardware and software design. Thus, electronic systems design automation had
to embrace hardware/software codesign as one of its major tasks and objectives.
The formalization of the related design problems enabled synthesis and verification
of hardware/software systems through the development of computer-aided design
methods and tools.

However, it is our opinion that a sound system design methodology must start
by capturing the design specifications at the highest level of abstraction and then
proceed toward an efficient implementation by subsequent refinement steps. The
partition of the design into hardware and software is indeed a consequence of
decisions taken at a higher level of abstraction. The critical decisions are about
the architecture of the system (processors, buses, hardware accelerators, memories,
and so on) that will carry on the computation and communication tasks associated
with the overall specification of the design. This design process is segmented into
a series of similar steps. The principles at the basis of each step consist of hiding
unnecessary details of an implementation, summarizing the important parameters of
the implementation in an abstract model, and limiting the design space exploration
to a set of potential platform instances. The design process is a meet-in-the-
middle approach where the refinement from specification toward implementation is
matched against a library of components whose models are abstractions of possible
implementations.

v

vi Foreword

This was indeed the basis for the development of a design methodology that
goes under the name of platform-based design where the steps outlined above have
been formalized wherever possible. This methodology includes the development of
hardware and the related software when the architectural decisions have been made
and the design tasks have been mapped to the components of the architecture. A task
that is mapped into hardware can then be synthesized with the appropriate tools in
parallel to the software development that takes place when the mapping process has
allocated the task to a programmable component. Note also that in this framework,
it is rather clear that according to the available programmable components, different
software design processes can be developed. In fact, programming a microprocessor
is quite different than programming a DSP or a special purpose processor.

The first step in the design process is then capturing a set of specifications or
requirements on the functionality and the architecture of the design. These will
guide the design process through the refinement steps. Requirements are in general
denotational statements about what the system is supposed to do. For example, if
we are to design a special purpose math processor that computes the solution of
nonlinear algebraic equations, the functional requirement would be stated as:

Find x such that F .x/ D 0;

where no algorithm to accomplish this task has been chosen. The choice of the al-
gorithm is already a refinement step in the design task. This example underlines that
requirements are abstract statements about what the design has to accomplish. Some
of the requirements may be given in terms of the properties of an implementation
but still in abstracted form. For example,

The system has to consume no more than 1kW of power.

Of course this is a constraint that encompasses the entire design space from
functionality to final implementation, and while in the first steps of the architecture
selection, the power consumption can be estimated, and it will have to be verified
at the final implementation where the physics of the solution will be known. The
design space exploration is determined in part by these requirements.

In addition to the requirements, often a set of desirable features of the design
can be stated. In this case, the mathematical formalism is a function that can be
either minimized or maximized. Then the refinement steps take the form of an
optimization problem where the objective functions are optimized in the presence
of complex constraints.

Often the design process of interest has already been given in terms of high-
level functionality where some design decisions have been taken. Using the example
above, we may be asked to implement the Newton–Raphson procedure, a choice for
the algorithm to be used to meet the requirement. This is given in terms of behavior,
i.e., an operational description at the appropriate level of abstraction.

Once the behavior has been selected and described, then it is time to determine
an architecture to implement this behavior that optimizes the goal function(s)
and satisfies the constraints. The architecture may be developed anew or obtained
combining elements in a library of available components or a combination of both

Foreword vii

whereby library elements are combined with virtual components that have to be
designed from scratch.

In the design process, synthesis steps are intertwined with verification steps
that check whether the constraints are satisfied, the functionality is correctly
implemented, and the design is feasible.

This handbook covers extensively many topics specific to hardware/software
codesign intended as system design as described above, namely, modeling, design
and optimization, validation and verification, as well as application areas. Modeling
has been a key design technology for capturing system-level aspects: it is achieved
today via specialized languages and graphical formalisms. The underlying seman-
tics of these representations is key to the application of rigorous methods to capture
the real intent of the design and to offer a framework where properties of the design
can be assessed. At the same time, the expressive power of the language is important
to serve a wide variety of designers and design applications. For example, within
general-purpose languages, SystemC – a class library with hardware semantics –
has shown to be a viable extension to C++ to capture hardware components in an
object-oriented fashion.

System architectures have changed significantly over the last two decades, to
exploit the growth and diversification of the underlying semiconductor technol-
ogy. As a result of the limited growth of clock operational frequencies and the
wide availability of devices due to downscaling, multiprocessor architectures with
significant on-chip memory (or low-latency off-chip memory) are dominating the
market. Indeed, multiprocessing fits the need of realizing systems with limited
energy consumption, thus avoiding thermal and dark silicon issues. Codesign in a
multiprocessing environment provides major challenges, such as exploration of the
design space and of parametric choices that can maximize the return of distributed
software applications. Design and optimization require often cross-layer techniques
that can span various modeling abstractions and operate on the tuning of various
system aspects concurrently.

Much research emphasis on memory architectures has been fueled both by the
need to handle big data “in proximity” as well as by the availability of novel memory
technologies including their physical stacking. It is important to remark that this
problem is not only a hardware design problem, as the potential beneficial use of
memory hierarchies affects system and software design. By the same token, on-chip
communication has evolved to networks-on-chips (NoCs), which encompass various
structured interconnect schemes leveraging data packetization and routing. NoC
design within multiprocessing systems requires the use of specific design techniques
to match hardware structures realizing the network architecture to their operational
protocols that are often programmable and specified in software.

Many design tools have been proposed to synthesize, partition, and optimize
systems. In the recent years, the use of programmable processor cores (e.g., ARM)
as black boxes within multiprocessing systems has led to a specific focus on both
memory and communication synthesis and optimization. Conversely, the search for
energy-performance optimal computational engines has led to application-specific
instruction-set processors. Such processors occupy a limited but strategic part of

viii Foreword

the computing product spectrum and pose a key codesign problem. Indeed, the
definition of an instruction set has been the fulcrum of codesign techniques since the
invention of the digital computer. Thus, the possibility of designing and optimizing
the instruction set can be viewed as searching for an optimum position of this
fulcrum to balance the hardware and software cost and performance.

The selection of the functionalities to implement in hardware and of the ones in
software is a system design issue that precedes HW/SW codesign. Indeed, system
design can be characterized as function/architecture codesign, where function is
what we wish to realize and architecture is how we are going to implement the func-
tionality. As described above, architecture can be defined as the functional level as
well. In this case, we decompose a function into a network of subfunctions. Each of
this subfunction can be further decomposed until we decide to allocate the leaves of
the functional decomposition to components of a hardware architecture. The hard-
ware architecture consists of components such as processors, memories, sensors,
actuators, communication entities, and specialized hardware components. Once a
block of functionality is assigned to a programmable component, its implementation
will be a software program running onto that component. If it is assigned to a
specialized hardware, then its implementation will be a set of IP blocks, and we have
a HW/SW codesign problem at hand. System design is where important decisions
are taken and where it is of paramount importance to consider available components
to maximize reuse. Platform-based design has been a major step forward in
conceiving HW/SW systems that enabled the use of synthesis and verification tools
with high efficiency. Indeed, a platform is a restriction of the design space.

Methods and tools for software synthesis and optimization have led to the
automatic rewriting of specification in terms of the best primitives to be used by
a processor. For example, ARM processors benefit from using guarded instructions,
and making them explicit in software improves the compiler performance. Software
analysis – in terms of execution time – is extremely important to quantify and bound
delay in system design, especially in view of satisfying timing constraints for task
executions. Thus, software timing analysis and verification is a key task of HW/SW
codesign.

Validating system design is the most important task of all, since most digital
systems are required to satisfy safety and dependability constraints. An important
area is the verification of formal models that abstract parts – if not the entirety –
of digital systems. Formal verification is based on choosing specific properties and
checking if they are satisfied in all operational instances. Functional and timing
behavior are cornerstones of verification. Often such properties are shown to hold
with subsystems, and thus system composability is a key asset in proving correctness
by construction. Needless to say, few systems are composable in a straightforward
way, and this motivates the large research effort in verification. Large systems are
often validated by semiformal techniques or by broader but weaker techniques
such as simulation, emulation, and prototyping. The inherent weakness of these
techniques is in asserting properties that are valid under a wide set of environmental
conditions. Unfortunately, when systems fail, they often fail under unusual operating
conditions.

Foreword ix

Codesign is practiced differently in various application domains. This book
covers examples such as datacenter, automotive system, video/image processing,
and cyber-physical system design. The peculiarities of these domains in terms of
requirements and objectives are reflected in the various ways of applying codesign
modeling abstraction as well as synthesis, optimization, and verification methods.

Overall, this handbook presents a broad set of techniques that show the inherent
maturity of the state of the art in hardware/software codesign.

University of California at Berkeley Alberto L. Sangiovanni-Vincentelli
USA
November 2016

Institute of Electrical Engineering Giovanni De Micheli
EPFL, Switzerland
November 2016

Preface

Hardware/software (HW/SW) codesign was first introduced as a new design
methodology for SoCs (systems-on-chip) in the early 1990s to design hardware
and software concurrently with the goal to reduce the design time and cost of such
systems. After more than 25 years of incessant research and development, it is now
regarded as a de facto standard, and the term has become serving as an umbrella for
methodologies to design complex electronic systems, even distributed embedded
systems. HW/SW codesign covers the full spectrum of system design issues from
initial behavior specification to final implementation. Codesign methodologies also
include modeling the system behavior independently of the system architecture at a
high level and exploring the design space of system architecture at the early design
stage. For fast design space exploration, it is necessary to estimate the system per-
formance and resource requirements. HW/SW cosimulation enables us to develop
software before hardware implementations become available. Finally, cosynthesis
denoting the process of automatically synthesizing hardware components as well
as software from a given specification for implementation on a target platform and
including also the interfaces for communication between hardware components and
processors belongs to the key problems attacked by codesign.

In spite of its significance and usefulness, we discovered that it is quite difficult
to understand and learn about its benefits and full impact on real system design,
particularly because there did not exist any book or reference on HW/SW codesign
until the time of writing this book. Thus, it is our great pleasure to edit this
handbook, quenching the thirst for the reference. In this book, we present to you
the core issues of hardware/software codesign and key techniques in the design
flow. In addition, selected codesign tools and design environments are described as
well as case studies that demonstrate the usefulness of HW/SW codesign. This book
will be updated regularly to follow the progress of design techniques and introduce
commercial as well as research design tools available for our readers. It is meant to
serve as a reference not only to interested researchers and engineers in the field but

xi

xii Preface

equally to students. We hope you all will grasp the wide spectrum of subjects that
belong to HW/SW codesign and get most benefits out of it for your system design
and related optimization problems.

Department of Computer Science and Engineering Soonhoi Ha
Seoul National University
Gwanak-ro 1, Gwanak-gu
Seoul, Korea
June 2017

Department of Computer Science Jürgen Teich
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Cauerstr. 11
Erlangen, Germany
June 2017

Contents

Volume 1

Part I Introduction to Hardware/Software Codesign 1

1 Introduction to Hardware/Software Codesign 3
Soonhoi Ha, Jürgen Teich, Christian Haubelt, Michael Glaß,
Tulika Mitra, Rainer Dömer, Petru Eles, Aviral Shrivastava,
Andreas Gerstlauer, and Shuvra S. Bhattacharyya

Part II Models and Languages for Codesign . 27

2 Quartz: A Synchronous Language for Model-Based
Design of Reactive Embedded Systems . 29
Klaus Schneider and Jens Brandt

3 SysteMoC: A Data-Flow Programming Language for Codesign . . . 59
Joachim Falk, Christian Haubelt, Jürgen Teich, and
Christian Zebelein

4 ForSyDe: System Design Using a Functional Language
and Models of Computation . 99
Ingo Sander, Axel Jantsch, and Seyed-Hosein
Attarzadeh-Niaki

5 Modeling Hardware/Software Embedded Systems with
UML/MARTE: A Single-Source Design Approach 141
Fernando Herrera, Julio Medina, and Eugenio Villar

Part III Design Space Exploration . 187

6 Optimization Strategies in Design Space Exploration 189
Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame

7 Hybrid Optimization Techniques for System-Level Design
Space Exploration . 217
Michael Glaß, Jürgen Teich, Martin Lukasiewycz, and
Felix Reimann

xiii

http://dx.doi.org/10.1007/978-94-017-7267-9_41
http://dx.doi.org/10.1007/978-94-017-7267-9_3
http://dx.doi.org/10.1007/978-94-017-7267-9_4
http://dx.doi.org/10.1007/978-94-017-7267-9_5
http://dx.doi.org/10.1007/978-94-017-7267-9_6
http://dx.doi.org/10.1007/978-94-017-7267-9_7
http://dx.doi.org/10.1007/978-94-017-7267-9_8

xiv Contents

8 Architecture and Cross-Layer Design Space Exploration 247
Santanu Sarma and Nikil Dutt

9 Scenario-Based Design Space Exploration . 271
Andy Pimentel and Peter van Stralen

10 Design Space Exploration and Run-Time Adaptation for
Multicore Resource Management Under Performance
and Power Constraints . 301
Santiago Pagani, Muhammad Shafique, and Jörg Henkel

Part IV Processor, Memory, and Communication Architecture
Design . 333

11 Reconfigurable Architectures . 335
Mansureh Shahraki Moghaddam, Jae-Min Cho, and
Kiyoung Choi

12 Application-Specific Processors . 377
Tulika Mitra

13 Memory Architectures . 411
Preeti Ranjan Panda

14 Emerging and Nonvolatile Memory . 443
Chun Jason Xue

15 Network-on-Chip Design . 461
Haseeb Bokhari and Sri Parameswaran

16 NoC-Based Multiprocessor Architecture for
Mixed-Time-Criticality Applications . 491
Kees Goossens, Martijn Koedam, Andrew Nelson,
Shubhendu Sinha, Sven Goossens, Yonghui Li,
Gabriela Breaban, Reinier van Kampenhout, Rasool Tavakoli,
Juan Valencia, Hadi Ahmadi Balef, Benny Akesson,
Sander Stuijk, Marc Geilen, Dip Goswami, and Majid Nabi

Part V Hardware/Software Cosimulation and Prototyping 531

17 Parallel Simulation . 533
Rainer Dömer, Guantao Liu, and Tim Schmidt

18 Multiprocessor System-on-Chip Prototyping Using
Dynamic Binary Translation . 565
Frédéric Pétrot, Luc Michel, and Clément Deschamps

19 Host-Compiled Simulation . 593
Daniel Mueller-Gritschneder and Andreas Gerstlauer

http://dx.doi.org/10.1007/978-94-017-7267-9_9
http://dx.doi.org/10.1007/978-94-017-7267-9_10
http://dx.doi.org/10.1007/978-94-017-7267-9_11
http://dx.doi.org/10.1007/978-94-017-7267-9_12
http://dx.doi.org/10.1007/978-94-017-7267-9_13
http://dx.doi.org/10.1007/978-94-017-7267-9_14
http://dx.doi.org/10.1007/978-94-017-7267-9_15
http://dx.doi.org/10.1007/978-94-017-7267-9_16
http://dx.doi.org/10.1007/978-94-017-7267-9_17
http://dx.doi.org/10.1007/978-94-017-7267-9_19
http://dx.doi.org/10.1007/978-94-017-7267-9_20
http://dx.doi.org/10.1007/978-94-017-7267-9_18

Contents xv

20 Precise Software Timing Simulation Considering
Execution Contexts . 621
Oliver Bringmann, Sebastian Ottlik, and Alexander Viehl

Volume 2

Part VI Performance Estimation, Analysis, and Verification 653

21 Timing Models for Fast Embedded Software
Performance Analysis . 655
Oliver Bringmann, Christoph Gerum, and Sebastian Ottlik

22 Semiformal Assertion-Based Verification
of Hardware/Software Systems in a Model-Driven
Design Framework . 683
Graziano Pravadelli, Davide Quaglia, Sara Vinco, and
Franco Fummi

23 CPA: Compositional Performance Analysis . 721
Robin Hofmann, Leonie Ahrendts, and Rolf Ernst

24 Networked Real-Time Embedded Systems . 753
Haibo Zeng, Prachi Joshi, Daniel Thiele, Jonas Diemer,
Philip Axer, Rolf Ernst, and Petru Eles

Part VII Hardware/Software
Compilation and Synthesis . 793

25 Hardware-Aware Compilation . 795
Aviral Shrivastava and Jian Cai

26 Memory-Aware Optimization of Embedded Software for
Multiple Objectives . 829
Peter Marwedel, Heiko Falk, and Olaf Neugebauer

27 Microarchitecture-Level SoC Design . 867
Young-Hwan Park, Amin Khajeh, Jun Yong Shin,
Fadi Kurdahi, Ahmed Eltawil, and Nikil Dutt

Part VIII Codesign Tools and Environment . 915

28 MAPS: A Software Development Environment for
Embedded Multicore Applications . 917
Rainer Leupers, Miguel Angel Aguilar, Juan Fernando Eusse,
Jeronimo Castrillon, and Weihua Sheng

29 HOPES: Programming Platform Approach for Embedded
Systems Design . 951
Soonhoi Ha and Hanwoong Jung

http://dx.doi.org/10.1007/978-94-017-7267-9_21
http://dx.doi.org/10.1007/978-94-017-7267-9_22
http://dx.doi.org/10.1007/978-94-017-7267-9_23
http://dx.doi.org/10.1007/978-94-017-7267-9_24
http://dx.doi.org/10.1007/978-94-017-7267-9_25
http://dx.doi.org/10.1007/978-94-017-7267-9_26
http://dx.doi.org/10.1007/978-94-017-7267-9_27
http://dx.doi.org/10.1007/978-94-017-7267-9_28
http://dx.doi.org/10.1007/978-94-017-7267-9_2
http://dx.doi.org/10.1007/978-94-017-7267-9_1

xvi Contents

30 DAEDALUS: System-Level Design Methodology for
Streaming Multiprocessor Embedded Systems on Chips 983
Todor Stefanov, Andy Pimentel, and Hristo Nikolov

31 SCE: System-on-Chip Environment . 1019
Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer

32 Metamodeling and Code Generation in the
Hardware/Software Interface Domain . 1051
Wolfgang Ecker and Johannes Schreiner

33 Hardware/Software Codesign Across Many Cadence
Technologies . 1093
Grant Martin, Frank Schirrmeister, and Yosinori Watanabe

34 Synopsys Virtual Prototyping for Software Development
and Early Architecture Analysis . 1127
Tim Kogel

Part IX Applications and Case Studies . 1161

35 Joint Computing and Electric Systems Optimization for
Green Datacenters . 1163
Ali Pahlevan, Maurizio Rossi, Pablo G. Del Valle,
Davide Brunelli, and David Atienza

36 The DSPCAD Framework for Modeling and Synthesis of
Signal Processing Systems . 1185
Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li,
William Plishker, and Shuvra S. Bhattacharyya

37 Control/Architecture Codesign for Cyber-Physical Systems 1221
Wanli Chang, Licong Zhang, Debayan Roy, and
Samarjit Chakraborty

38 Wireless Sensor Networks . 1261
Mihai Teodor Lazarescu and Luciano Lavagno

39 Codesign Case Study on Transport-Triggered Architectures 1303
Jarmo Takala, Pekka Jääskeläinen, and Teemu Pitkänen

40 Embedded Computer Vision . 1339
Marilyn Wolf

Index . 1353

http://dx.doi.org/10.1007/978-94-017-7267-9_30
http://dx.doi.org/10.1007/978-94-017-7267-9_31
http://dx.doi.org/10.1007/978-94-017-7267-9_32
http://dx.doi.org/10.1007/978-94-017-7267-9_33
http://dx.doi.org/10.1007/978-94-017-7267-9_34
http://dx.doi.org/10.1007/978-94-017-7267-9_35
http://dx.doi.org/10.1007/978-94-017-7267-9_36
http://dx.doi.org/10.1007/978-94-017-7267-9_37
http://dx.doi.org/10.1007/978-94-017-7267-9_38
http://dx.doi.org/10.1007/978-94-017-7267-9_39
http://dx.doi.org/10.1007/978-94-017-7267-9_40

About the Editors

Soonhoi Ha
Department of Computer Science and
Engineering
Seoul National University
Gwanak-ro 1, Gwanak-gu
Seoul, Korea

Soonhoi Ha received the B.S. and M.S. degrees in
Electronics Engineering from Seoul National Univer-
sity, Seoul, Korea, in 1985 and 1987, respectively, and
the Ph.D. degree in Electrical Engineering and Com-

puter Science from the University of California at Berkeley, Berkeley, CA, USA,
in 1992. He is currently a professor with Seoul National University. His current
research interests include HW/SW codesign of embedded systems, system simu-
lation, and robust embedded software design. Prof. Ha has actively participated in
the premier international conferences in the EDA area, serving CODES+ISSS 2006,
ASP-DAC 2008, and ESTIMedia 2005–2006 as the program cochair and ESWeek
2017 as the vice general chair. He is an IEEE Fellow and a member of ACM.

Jürgen Teich
Department of Computer Science
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Cauerstr. 11
Erlangen, Germany

Jürgen Teich is with Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Germany, where he is di-
recting the Chair for Hardware/Software Codesign
since 2003. He received the M.S. degree (Dipl.- Ing.;
with honors) from the University of Kaiserslautern,

Germany, in 1989 and the Ph.D. degree (Dr.-Ing.; summa cum laude) from the
University of Saarland, Saarbruecken, Germany, in 1993.

xvii

xviii About the Editors

Prof. Teich has organized various ACM/IEEE conferences/symposia as program
chair including CODES+ISSS 2007, FPL 2008, ASAP 2010, and DATE 2016. He
also serves as the vice general chair of DATE 2018 as well as in the editorial board
of scientific journals including ACM TODAES, IEEE Design and Test, and JES. He
has edited two textbooks on hardware/software codesign (Springer).

Since 2010, he has also been the principal coordinator of the Transregional
Research Center 89 “Invasive Computing” on multicore research funded by the
German Research Foundation (DFG). Since 2011, he is a member of Academia
Europaea, the Academy of Europe.

Section Editors

Part I: Introduction to Hardware/Software Codesign

Soonhoi Ha Department of Computer Science and Engineering, Seoul National
University, Gwanak-gu, Seoul, Korea
sha@snu.ac.kr

Part II: Models and Languages for Codesign

Christian Haubelt Institute of Applied Microelectronics and Computer Engineer-
ing, University of Rostock, Rostock, Germany
christian.haubelt@uni-rostock.de

xix

xx Section Editors

Part III: Design Space Exploration

Michael Glass Institute of Embedded Systems/Real-Time Systems at Ulm Univer-
sity, Ulm, Germany
michael.glass@uni-ulm.de

Part IV: Processor, Memory, and Communication Architecture
Design

Tulika Mitra Department of Computer Science, School of Computing, National
University of Singapore, Singapore, Singapore
tulika@comp.nus.edu.sg

Section Editors xxi

Part V: Hardware/Software Cosimulation and Prototyping

Rainer Dömer Center for Embedded and Cyber-physical Systems, Department
of Electrical Engineering and Computer Science, The Henry Samueli School of
Engineering, University of California at Irvine, Irvine, CA, USA
doemer@uci.edu

Part VI: Performance Estimation, Analysis, and Verification

Petru Eles Department of Computer and Information Science, Linkoping Univer-
sity, Linköping, Sweden
petru.eles@liu.se

xxii Section Editors

Part VII: Hardware/Software Compilation and Synthesis

Aviral Shrivastava School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, USA
aviral.shrivastava@asu.edu

Part VIII: Codesign Tools and Environment

Andreas Gerstlauer Department of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX, USA
gerstl@ece.utexas.edu

Section Editors xxiii

Part IX: Applications and Case Studies

Shuvra Bhattacharyya Department of Electrical and Computer Engineering and
Institute for Advanced Computer Studies, University of Maryland, College Park,
USA
Department of Pervasive Computing, Tampere University of Technology, Tampere,
Finland
ssb@umd.edu

Contributors

Miguel Angel Aguilar Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Leonie Ahrendts Institute of Computer and Network Engineering, Technical
University Braunschweig, Braunschweig, Germany

Benny Akesson Eindhoven University of Technology, Eindhoven, The Netherlands

David Atienza Embedded Systems Laboratory (ESL), EPFL, Lausanne,
Switzerland

Seyed-Hosein Attarzadeh-Niaki Shahid Beheshti University (SBU), Tehran, Iran

Philip Axer NXP Semiconductors, Hamburg, Germany

Hadi Ahmadi Balef Eindhoven University of Technology, Eindhoven, The
Netherlands

Giovanni Beltrame Polytechnique Montréal, Montreal, QC, Canada

Shuvra S. Bhattacharyya Department of Electrical and Computer Engineering
and Institute for Advanced Computer Studies, University of Maryland, College
Park, MD, USA

Department of Pervasive Computing, Tampere University of Technology, Tampere,
Finland

Haseeb Bokhari University of New South Wales (UNSW), Sydney, NSW,
Australia

Jens Brandt Faculty of Electrical Engineering and Computer Science, Hochschule
Niederrhein, Krefeld, Germany

Gabriela Breaban Eindhoven University of Technology, Eindhoven, The
Netherlands

Oliver Bringmann Wilhelm-Schickard-Institut, University of Tübingen, Tübingen,
Germany

Embedded Systems, University of Tübingen, Tübingen, Germany

xxv

xxvi Contributors

Davide Brunelli Department of Industrial Engineering, University of Trento,
Trento, Italy

Jian Cai Arizona State University, Tempe, AZ, USA

Jeronimo Castrillon Center for Advancing Electronics Dresden, TU Dresden,
Dresden, Germany

Samarjit Chakraborty TU Munich, Munich, Germany

Wanli Chang Singapore Institute of Technology, Singapore, Singapore

Jae-Min Cho Department of Electrical and Computer Engineering, Seoul National
University, Seoul, Korea

Kiyoung Choi Department of Electrical and Computer Engineering, Seoul
National University, Seoul, Korea

Pablo G. Del Valle Embedded Systems Laboratory (ESL), EPFL, Lausanne,
Switzerland

Clément Deschamps Antfield SAS, Grenoble, France

Jonas Diemer Symtavision, Braunschweig, Germany

Rainer Dömer Center for Embedded and Cyber-Physical Systems, Department
of Electrical Engineering and Computer Science, The Henry Samueli School of
Engineering, University of California, Irvine, CA, USA

Nikil Dutt Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Wolfgang Ecker Infineon Technologies AG, Neubiberg, Germany

Petru Eles Department of Computer and Information Science, Linköping
University, Linköping, Sweden

Ahmed Eltawil Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Rolf Ernst Institute of Computer and Network Engineering, Technical University
Braunschweig, Braunschweig, Germany

Juan Fernando Eusse Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Heiko Falk Institute of Embedded Systems, Hamburg University of Technology,
Hamburg, Germany

Joachim Falk Department of Computer Science, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

Franco Fummi Università di Verona, Verona, Italy

Marc Geilen Eindhoven University of Technology, Eindhoven, The Netherlands

Contributors xxvii

Andreas Gerstlauer Department of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX, USA

Christoph Gerum Embedded Systems, University of Tübingen, Tübingen,
Germany

Michael Glaß Institute of Embedded Systems/Real-Time Systems at Ulm
University, Ulm, Germany

Kees Goossens Eindhoven University of Technology, Eindhoven, The Netherlands

Sven Goossens Eindhoven University of Technology, Eindhoven, The Netherlands

Dip Goswami Eindhoven University of Technology, Eindhoven, The Netherlands

Soonhoi Ha Department of Computer Science and Engineering, Seoul National
University, Gwanak-gu, Seoul, Korea

Christian Haubelt Department of Computer Science and Electrical Engineering,
Institute of Applied Microelectronics and Computer Engineering, University of
Rostock, Rostock, Germany

Jörg Henkel Chair for Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Fernando Herrera GESE Group, TEISA Department, ETSIIT, Universidad de
Cantabria, Santander, Cantabria, Spain

Robin Hofmann Institute of Computer and Network Engineering, Technical
University Braunschweig, Braunschweig, Germany

Pekka Jääskeläinen Tampere University of Technology, Tampere, Finland

Axel Jantsch Vienna University of Technology, Vienna, Austria

Prachi Joshi Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA

Hanwoong Jung Seoul National University, Gwanak-gu, Seoul, Korea

Amin Khajeh Broadcom Corp., San Jose, CA, USA

Martijn Koedam Eindhoven University of Technology, Eindhoven, The
Netherlands

Tim Kogel Synopsys, Inc., Aachen, Germany

Fadi Kurdahi Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Luciano Lavagno Politecnico di Torino, Torino, Italy

Mihai Teodor Lazarescu Politecnico di Torino, Torino, Italy

xxviii Contributors

Kyunghun Lee Department of Electrical and Computer Engineering, University
of Maryland, College Park, MD, USA

Rainer Leupers Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Lin Li Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA

Yonghui Li Eindhoven University of Technology, Eindhoven, The Netherlands

Shuoxin Lin Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA

Guantao Liu Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Yanzhou Liu Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA

Martin Lukasiewycz Robert Bosch GmbH, Corporate Research, Renningen,
Germany

Grant Martin Cadence Design Systems, San Jose, CA, USA

Peter Marwedel Computer Science, TU Dortmund University, Dortmund,
Germany

Julio Medina Software Engineering and Real-Time Group, University of
Cantabria, Santander, Cantabria, Spain

Luc Michel Antfield SAS, Grenoble, France

Tulika Mitra Department of Computer Science, School of Computing, National
University of Singapore, Singapore, Singapore

Daniel Mueller-Gritschneder Department of Electrical and Computer
Engineering, Technical University of Munich, Munich, Germany

Majid Nabi Eindhoven University of Technology, Eindhoven, The Netherlands

Andrew Nelson Eindhoven University of Technology, Eindhoven, The Netherlands

Olaf Neugebauer Computer Science, TU Dortmund University, Dortmund,
Germany

Hristo Nikolov Leiden University, Leiden, The Netherlands

Sebastian Ottlik Microelectronic System Design, FZI Research Center for
Information Technology, Karlsruhe, Germany

Santiago Pagani Chair for Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Ali Pahlevan Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland

Contributors xxix

Preeti Ranjan Panda Department of Computer Science and Engineering, Indian
Institute of Technology Delhi, New Delhi, India

Jacopo Panerati Polytechnique Montréal, Montreal, QC, Canada

Sri Parameswaran University of New South Wales (UNSW), Sydney, NSW,
Australia

Young-Hwan Park Digital Media and Communications R&D Center, Samsung
Electronics, Seoul, Korea

Frédéric Pétrot Université de Grenoble Alpes, Grenoble, France

Andy Pimentel University of Amsterdam, Amsterdam, The Netherlands

Teemu Pitkänen Ajat Oy, Espoo, Finland

William Plishker Department of Electrical and Computer Engineering, University
of Maryland, College Park, MD, USA

Graziano Pravadelli Università di Verona, Verona, Italy

Davide Quaglia Università di Verona, Verona, Italy

Felix Reimann Audi Electronics Venture GmbH, Gaimersheim, Germany

Maurizio Rossi Department of Industrial Engineering, University of Trento,
Trento, Italy

Debayan Roy TU Munich, Munich, Germany

Ingo Sander KTH Royal Institute of Technology, Stockholm, Sweden

Santanu Sarma University of California Irvine, Irvine, CA, USA

Gunar Schirner Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA

Frank Schirrmeister Cadence Design Systems, San Jose, CA, USA

Tim Schmidt Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Klaus Schneider Embedded Systems Group, University of Kaiserslautern,
Kaiserslautern, Germany

Johannes Schreiner Infineon Technologies AG, Neubiberg, Germany

Donatella Sciuto Politecnico di Milano, Milano, Italy

Muhammad Shafique Chair for Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Mansureh Shahraki Moghaddam Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea

Weihua Sheng Silexica GmbH, Köln, Germany

xxx Contributors

Jun Yong Shin Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Aviral Shrivastava School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, AZ, USA

Shubhendu Sinha Eindhoven University of Technology, Eindhoven, The
Netherlands

Todor Stefanov Leiden University, Leiden, The Netherlands

Sander Stuijk Eindhoven University of Technology, Eindhoven, The Netherlands

Jarmo Takala Tampere University of Technology, Tampere, Finland

Rasool Tavakoli Eindhoven University of Technology, Eindhoven, The
Netherlands

Jürgen Teich Department of Computer Science, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

Daniel Thiele Elektrobit Automotive GmbH, Erlangen, Germany

Juan Valencia Eindhoven University of Technology, Eindhoven, The Netherlands

Reinier van Kampenhout Eindhoven University of Technology, Eindhoven, The
Netherlands

Peter van Stralen Philips Healthcare, Best, The Netherlands

Alexander Viehl Microelectronic System Design, FZI Research Center for
Information Technology, Karlsruhe, Germany

Eugenio Villar GESE Group, TEISA Department, ETSIIT, Universidad de
Cantabria, Santander, Cantabria, Spain

Sara Vinco Politecnico di Torino, Turin, Italy

Yosinori Watanabe Cadence Design Systems, San Jose, CA, USA

Marilyn Wolf School of Electrical and Computer Engineering, Georgia Institute
of Technology, Atlanta, GA, USA

Chun Jason Xue City University of Hong Kong, Hong Kong, Hong Kong

Christian Zebelein Valeo Siemens eAutomotive Germany GmbH, Erlangen,
Germany

Haibo Zeng Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA

Licong Zhang TU Munich, Munich, Germany

List of Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Area Network
ABV Assertion-Based Verification
AC Alternating Current
ACK Acknowledgement
ADAS Advanced Driver Assistance System
ADC Analog-to-Digital Converter
ADF Architecture Description File
ADG Approximated Dependence Graph
ADL Architecture Description Language
ADM Abstract Design Module
ADRS Average Distance from Reference Set
ADT Abstract Data Type
AFDX Avionics Full-Duplex Switched Ethernet
AHB Advanced High-performance Bus
AIF Averest Intermediate Format
ALAP As Late As Possible
ALM Adaptive Logic Module
ALU Arithmetic-Logic Unit
ANN Artificial Neural Network
APB Advanced Peripheral Bus
API Application Programming Interface
ARM Advanced Risc Machines
ARQ Automatic Repeat Request
ASAP As Soon as Possible
ASCII American Standard Code for Information Interchange
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
ASK Amplitude Shift Key
ASMBL Advanced Silicon Modular Block
ASP Application-Specific Processor
AST Abstract Syntax Tree
AT Approximately Timed

xxxi

xxxii List of Acronyms

AT-BP Approximately Timed Base Protocol
AV Architects View
AVB Audio/Video Bridging
AXI Advanced eXtensible Interface
BB Basic Block
BCET Best-Case Execution Time
BCRT Best-Case Response Time
BD Budget Descriptor
BDF Boolean Data Flow
BER Bit Error Rate
BERET Bundled Execution of REcurring Traces
BFD Best-Fit-Decreasing
BFM Bus-Functional Model
BIST Built-In Self-Test
BLB Bit Lock Block
BLM Block-Level Model
BLS Binary-Level Simulation
BNF Backus-Naur Form
BOM Bill of Materials
BPSK Binary PSK
BRF Bypass Register File
BSP Board Support Package
BTB Branch Target Buffer
CA Cycle Accurate
CAD Computer-Aided Design
CAL Cal Actor Language
CAN Controller Area Network
CCA Configurable Compute Accelerator
CC Communication Controller
CCE Configuration Cache Element
CCSP Credit-Controlled Static Priority
CDC Clock Domain Crossing
CDFG Control-/Data-Flow Graph
CDMA Code Division Multiple Access
CE Communication Element
CFDF Core Functional Data Flow
CFG Control-Flow Graph
CFU Custom Functional Unit
CGA Coarse-Grained Array
CG Call Graph
CGRA Coarse Grained Reconfigurable Architecture
CIC Common Intermediate Code
CIL Compiler-In-the-Loop
CIM Computation Independent Model
CIS Custom Instruction-Set

List of Acronyms xxxiii

CLB Configurable Logic Block
CLDSE Cross-Layer Design Space Exploration
CM Communication Memory
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Multi-Processor
CNN Convolutional Neural Network
CORDIC COordinate Rotational DIgital Computer
CVMP Correlation-aware VM Placement
COTS Commercial/Components Off-The-Shelf
CPA Compositional Performance Analysis
CPF Common Power Format
CPN C for Process Networks
CPS Cyber-Physical System
CPU Central Processing Unit
CRAC Computer Room Air Conditioning
CRC Cyclic Redundancy Check
CRPD Cache-Related Preemption Delay
CSDF Cyclo-Static Data Flow
CSMA/CD Carrier Sense Multiple Access/Collision Detection
CTI Charge Transfer Interconnect
CTL Computation Tree Logic
CUDA Compute Unified Device Architecture
CV Computer Vision
D2H Device-to-Host
DAG Directed Acyclic Graph
DB Database
DBT Dynamic Binary Translation
DC Direct Current
DCG Dynamic Call Graph
DCT Discrete Cosine Transform
DDF Dennis Data Flow
DDR Double Data Rate
DE Discrete Event
DES Discrete Event Simulation
DFG Data-Flow Graph/Dependence-Flow Graph
DFT Discrete Fourier Transfrom
DICE DSPCAD Integrative Command Line Environment
DIF Decimation-in-Frequency/Data-flow Interchange Format
DISC Dynamic Instruction-Set Computer
DIT Decimation-in-Time
DLMB Data Local Memory Bus
DLP Data-Level Parallelism
DMA Direct Memory Access
DMAMEM DMA Memory
DMEM Data Memory

xxxiv List of Acronyms

DMI Direct Memory Interface
DoD Depth-of-Discharge
DoE Design of Experiments
DOR Dimension Ordered Routing
DP Dynamic Programming
DPLL Davis-Putnam-Logemann-Loveland
DPM Dynamic Power Management
DPR Dynamic Partial Reconfiguration
DRAA Dynamically Reconfigurable ALU Array
DRAM Dynamic Random-Access Memory
DRESC Dynamically Reconfigurable Embedded System Compiler
DSE Design Space Exploration
DSL Domain-Specific Language
DSML Domain-Specific Modeling Language
DSO Distribution System Operator
DSP Digital Signal Processor/Digital Signal Processing
DTA Dynamic Timing Analysis
DTM Dynamic Thermal Management
DUT Design Under Test
DUV Design Under Verification
DVFS Dynamic Voltage and Frequency Scaling
DVS Dynamic Voltage Scaling
DWM Domain Wall Memory
DWT Discrete Wavelet Transform
EA Evolutionary Algorithm
EBNF Extended Backus-Naur Form
ECO Engineering Change Order
ECU Electronic Control Unit
EDA Electronic Design Automation
EDF Earliest Deadline First
EDP Energy-Delay Product
EDSP Energy-Delay Square Product
E/E Electric and Electronic
EEPROM Electrically Erasable Programmable Read-Only Memory
EFSM Extended Finite-State Machine
EGRA Expression Grained Reconfigurable Array
ELF Executable and Linkable Format
EMB Electro-Mechanical Brake
EMF Eclipse Modeling-Framework
EML Execution Modeling Level
EMS Edge Centric Modulo Scheduling
EOH Extremal Optimization meta-Heuristic
ES Embedded System
ESL Electronic System Level
ESS Energy Storage Systems

List of Acronyms xxxv

ET Event-Triggered/Execution Time
ETSCH Extended TSCH
EWFD Equally-Worst-Fit-Decreasing
FBSP Frame-Based Static Priority
FCFS First-Come First-Serve
FDS Force-Directed Scheduling
FeRAM Ferro-electric Random-Access Memory
FFT Fast Fourier Transform
FIFO First-In First-Out
FIR Finite Impulse Response
ForSyDe Formal System Design
FPGA Field-Programmable Gate Array
FS Feature Selection
FSM Finite State Machine
FTDMA Flexible Time Division Multiple Access
FT Fast Timed
FunState Functions Driven by State Machines
GA Genetic Algorithm
GALS Globally Asynchronous Locally Synchronous
GCC GNU Compiler Collection
GFRBM Generic File Reader Bus Master
GIPS Giga-Instruction Per Second
GLV Graph-Level Vectorization
GME Generic Modeling Environment
GOPS Giga Operations Per Second
GPGPU General-Purpose computing on Graphics Processing Units
GPIO General-Purpose Input/Output-pin
GPP General-Purpose Processor
GPRS General Packet Radio Service
GPT General-Purpose Timer
GPU Graphics Processing Unit
GUI Graphical User Interface
H2D Host-to-Device
HAL Hardware Abstraction Layer
HAPS High-performance ASIC Prototyping System
HDB Hardware Database
HDL Hardware Description Language
HDS Hardware-Dependent Software
HES Hybrid Electric Systems
HLS High-Level Synthesis
HMP Heterogeneous Multi-core Processor
HPC Horizontally Partitioned Cache
HRM Hardware Resource Modeling
HSCD Hardware/Software Codesign
HSDF Homogeneous (Synchronous) Data Flow

xxxvi List of Acronyms

HTML Hypertext Markup Language
HVL Hardware Verification Language
HW Hardware
I2C Inter-Integrated Circuit
ICFG Interprocedural Control-Flow Graph
ICT Information and Communications Technology
ICU Input Capture Unit
IDC Inquisitive Defect Cache
IDE Integrated Development Environment
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
II Initiation Interval
ILMB Instruction Local Memory Bus
ILP Integer Linear Program/Instruction-Level Parallelism
IMEM Instruction Memory
IMS Iterative Modulo Scheduling
IOE I/O Element
I/O Input/Output
IoT Internet of Things
IPC Inter-Process Communication/Instructions Per Cycle
IP Intellectual Property
IPB Intellectual Property Block
IPM Intellectual Property Module
IPS Instruction Per Second
IR Intermediate Representation
ISA Instruction-Set Architecture
ISEF Stretch Instruction-Set Extension Fabric
ISR Interrupt Service Routine
ISS Instruction-Set Simulator
IT Information Technology
ITRS International Technology Roadmap for Semiconductors
ITS Individual Test Subdirectory
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation
JTAG Joint Test Action Group
KPN Kahn Process Network
LAB Logic Array Block
LCS Live Cache States
LE Logic Element
LIDE LIghtweight Data-flow Environment
LIN Local Interconnect Network
LISA Language for Instruction-Set Architectures
LLVM Low-Level Virtual Machine
LRU Least-Recently Used
LS List Scheduling

List of Acronyms xxxvii

LTF Largest Task First
LTL Linear Time Logic
LT Loosely Timed
LUT Look-Up Table
M2M Model-to-Model
MAC Media Access Control/Multiply-Accumulator
MAPE Mean Average Percentage Error
MAPS MPSoC Application Programming Studio
MARTE Modeling and Analysis of Real-Time Embedded Systems
MBD Model-Based Design
MCO Multi-Core Optimization
MCR Mode Change Request
MCS Mixed-Criticality System
MDA Model-Driven Architecture
MDD Model-Driven Design
MDP Markov Decision Process
MDSDF Multi-Dimensional Synchronous Data Flow
MILP Mixed Integer Linear Programming
MIMO Multiple Input Multiple Output
MIPS Million Instructions Per Second
MIR Medical Image Registration
MISO Multiple Input Single Output
MJPEG Motion JPEG
MLBJ Multi-Level Back Jumping
MLoC Million Lines of Code
MMC/SD Multimedia/Secure Digital Card
MMIO Memory-Mapped I/O
MMU Memory Management Unit
MoC Model of Computation
MOF Meta Object Facility
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MOST Media Oriented Systems Transport
MPSoC Multi-Processor System-on-Chip
MRRG Modulo Resource Routing Graph
MTF Mean Time to Failure
MTJ Magnetic Tunnel Junction
MTM Mode Transition Machine
NDF Non-Determinate Data Flow
NFP Non-Functional Property
NI Network Interface
nML not a Machine Language
NMOS Negative-type Metal-Oxide-Semiconductor
NN Neural Network
NoC Network-on-Chip
NOCT Nominal Operating Cell Temperature

xxxviii List of Acronyms

NRE Non-Recurring Engineering
NVIC Nested Vectored Interrupt Controller
NVM Non-Volatile Memory
OCL Object Constraint Language
OFDM Orthogonal Frequency Dependent Multiplexing
OMG Object Management Group
OOO PDES Out-of-Order Parallel Discrete Event Simulation
OSAL Operation Set Abstraction Layer
OSCI Open SystemC Initiative
OS Operating System
OT Operation Table
OVL Open Verification Library
OVM Open Verification Methodology
PAMONO Plasmon-Assisted Microscopy of Nano-Objects
PB Pseudo Boolean
PCI Peripheral Component Interconnect
PCM Phase Change Memory
PC Personal Computer
PCP Peak Clustering-based Placement
PDES Parallel Discrete Event Simulation
PDF Probability Density Function
PDU Power Distribution Unit
PE Processing Element
PFU Programmable Functional Unit
PI Principal Investigator
PIC Programmable Interrupt Controller
PIM Platform Independent Model
PIP Parametric Integer Programming
PLB Processor Local Bus
PLL Phase Locked Loop
PLP Pipeline-Level Parallelism
PMOS Positive-type Metal-Oxide-Semiconductor
PMU Power Management Unit
PNG Portable Network Graphics
PN Process Network
PPN Polyhedral Process Network
PREESM Parallel and Real-time Embedded Executives Scheduling Method
PRISC Programmable Instruction-Set Processor
PSDF Parameterized Synchronous Data Flow
PSK Phase Shift Keying
PSL Property Specification Language
PSM Program State Machine/Parameterized Sets of Modes/Platform

Specific Model
PSNR Peak SNR
PSO Particle Swarm Optimization

List of Acronyms xxxix

PSTC Path Segment Timing Characterization
PV Photovoltaic
PVT Programmers View Time
PWM Pulse-Width Modulation
QAM Quadrature Amplitude Modulation
QEA Quantum-inspired Evolutionary Algorithm
QoS Quality of Service
QPSK Quadrature PSK
RAM Random-Access Memory
RAW Read-After-Write
RCM Reconfigurable Computing Module
RC Resistor-Capacitor/Reconfigurable Cell
RCS Reaching Cache States
RDF Random Dopant Fluctuations
RFID Radio-Frequency Identification
RF Register File/Radio Frequency
RFTS Run Fast Then Stop
RISC Reduced Instruction-Set Processor/Recoding Infrastructure for

SystemC
RISPP Rotating Instruction-Set Processing Platform
RLD Run Length Decoding
ROM Read-Only Memory
RR Round Robin
RRAM Resistive Random-Access Memory
RSM Response Surface Modeling
RST ReServation Table
RT Response Time
RTC Real-Time Clock
RTL Register Transfer Level
RTOS Real-Time Operating System
RVC Reconfigurable Video Coding
SADF Scenario-Aware Data Flow
SANLP Static Affine Nested Loop Program
SA Simulated Annealing
SAT Boolean Satisfiability
SBS Sequential Backward Selection
SCC Single Chip Cloud computer/Strongly Connected Component
SCE System-on-Chip Environment
SCML SystemC Modeling Library
SDC Secure Digital Card
SDF Synchronous Data Flow
SDK Software Development Kit
SDR Software Defined Radio
SDS System Development Suite
SDTC Scheduling and Data Transfer Configuration

xl List of Acronyms

SERE Sequential Extended Regular Expression
SESE Single-Entry Single-Exit
SFA Single Frequency Approximation
SFS Sequential Forward Selection
SFU Specialized Functional Unit
SG Segment Graph
SI Scheduling Interval
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Threads
SLDL System-Level Description Language
SLD System-Level Design
SLP System-Level Power
SLS Source-Level Simulation/System-Level Synthesis
SMP Symmetric Multi-Processing
SMT Satisfiability Modulo Theories
SMV Symbolic Model Verifier
SNR Signal-to-Noise Ratio
SoC System-on-Chip/State of Charge
SoH State of Health
SPI Serial Peripheral Interface/Signal Passing Interface
SPKM Split & Push Kernel Mapping
SPMD Single Program, Multiple Data
SPM Scratchpad Memory
SPNP Static-Priority Non-Preemptive
SPP Static Priority Preemptive
SPU Synergistic Processor Unit
SRAM Static Random-Access Memory
SSA Static Single Assignment
SSTA Statistical Static Timing Analysis
STC Standard Test Conditions
STMD Single Thread, Multiple Data
STree Schedule Tree
STT-RAM Spin-Transfer Torque Random-Access Memory
SVA System Verilog Assertions
SVM Support Vector Machine
SWC Software Cache
SW Software
SysteMoC SystemC Models of Computation
T-BCA Transaction-based Bus Cycle Accurate
TB Translation Block
TCE TTA-based Codesign Environment
TCL Tool Command Language
TCP/IP Transmission Control Protocol/Internet Protocol
TDB Timing Database
TDM Time-Division Multiplexing

List of Acronyms xli

TDMA Time-Division Multiple Access
TDP Thermal Design Power
TD Temporal Decoupling
TFT Thin-Film Transistor
TIE Tensilica Instruction Extension
TIFU Timer, Interrupt, and Frequency Unit
TLM Transaction-Level Model
TLP Task-Level Parallelism/Thread-Level Parallelism
TRM Trace Replay Module
TSCH Time-Synchronised Channel Hopping
TSN Time-Sensitive Networking
TSP Thermal Safe Power
TTA Transport-Triggered Architecture
TT-CAN Time-Triggered CAN
TTEthernet Time-Triggered Ethernet
TTP Time-Triggered Protocol
TT Time-Triggered
TWCA Typical Worst-Case Analysis
TWCRT Typical Worst-Case Response Time
TWI Two Wire Interface
UART Universal Asynchronous Receiver/Transmitter
UML Unified Modeling Language
UPF Unified Power Format
UPS Uninterruptible Power Supply
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
UTP Universal Testing Profile
UVM Universal Verification Methodology
VEP Virtual Execution Platform
VFI Voltage/Frequency Island
VF Vectorization Factor
V/f Voltage/Frequency
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VIVU Virtual Inlining and Virtual Unrolling
VLIW Very Long Instruction Word
VLSI Very-Large-Scale Integration
VM Virtual Machine
VOS Voltage Over Scaling
VPU Virtual Processing Unit
VP Virtual Prototype
VSIA Virtual Socket Interface Alliance
VSL Value Specification Language
VSP Virtual System Platform
WAR Write-After-Read

xlii List of Acronyms

WAW Write-After-Write
WCC WCET-aware C Compiler
WCDMA Wideband CDMA
WCEC Worst-Case Energy Consumption
WCEP Worst-Case Execution Path
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time
WL Word Line
WSDF Windowed Synchronous Data Flow
WSDL Web Service Definition Language
WSN Wireless Sensor Network
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema
XSLT Extensible Stylesheet Language Transformations
YML Y-chart Modeling Language

	Foreword
	Preface
	Contents
	About the Editors
	Section Editors
	Part I: Introduction to Hardware/Software Codesign
	Part II: Models and Languages for Codesign
	Part III: Design Space Exploration
	Part IV: Processor, Memory, and Communication Architecture Design
	Part V: Hardware/Software Cosimulation and Prototyping
	Part VI: Performance Estimation, Analysis, and Verification
	Part VII: Hardware/Software Compilation and Synthesis
	Part VIII: Codesign Tools and Environment
	Part IX: Applications and Case Studies

	Contributors
	List of Acronyms

