Skip to main content

Numerical Analysis and Simulation of the Dynamics of Mountain Glaciers

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 34))

Abstract

In this chapter, we analyze and approximate a nonlinear stationary Stokes problem that describes the motion of glacier ice. The existence and uniqueness of solutions are proved and an a priori error estimate for the finite element approximation is found. In a second time, we combine the Stokes problem with a transport equation for the volume fraction of ice, which describes the time evolution of a glacier. The accumulation due to snow precipitation and melting are accounted for in the source term of the transport equation. A decoupling algorithm allows the diffusion and the advection problems to be solved using a two-grids method. As an illustration, we simulate the evolution of Aletsch glacier, Switzerland, over the 21st century by using realistic climatic conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrett JW, Liu WB (1994) Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer Math 68(4):437–456

    Article  MATH  MathSciNet  Google Scholar 

  2. Caboussat A, Jouvet G, Picasso M, Rappaz J (2011) Numerical algorithms for free surface flow. In: Magoulès F (ed) Computational fluid dynamics. Chapman and Hall/CRC, pp 263–326

    Google Scholar 

  3. Colinge J, Rappaz J (1999) A strongly nonlinear problem arising in glaciology. Math Model Numer Anal M2AN 33(2):395–406

    Article  MATH  MathSciNet  Google Scholar 

  4. Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, New York

    Book  MATH  Google Scholar 

  5. Farinotti D, Huss M, Bauder A, Funk M, Truffer M (2009) A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. J Glaciol 55(191):422–430

    Article  Google Scholar 

  6. Franca LP, Frey SL (1992) Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 99(2–3):209–233

    Article  MATH  MathSciNet  Google Scholar 

  7. Frei C (2007) Die Klimazukunft der Schweiz. In: Klimaänderung und die Schweiz 2050: Erwartete Auswirkungen auf Umwelt, Gesellschaft und Wirtschaft. Beratende Organ für Fragen der Klimaänderung (OcCC) pp 12–16. http://www.occc.ch

  8. Girault V, Raviart PA (1986) Finite element methods for Navier–Stokes equations: theory and algorithms, springer series in computational mathematics, vol 5. Springer, Berlin

    Book  Google Scholar 

  9. Glowinski R, Rappaz J (2003) Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. Math Model Numer Anal M2AN 37(1):175–186

    Article  MATH  MathSciNet  Google Scholar 

  10. Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin

    Book  Google Scholar 

  11. Huss M, Bauder A, Funk M, Hock R (2008) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J Geophys Res 113, F01,015. doi:10.1029/2007JF000803

    Google Scholar 

  12. Hutter K (1983) Theoretical glaciology. Reidel, Dordrecht

    Book  Google Scholar 

  13. Jouvet G (2010) Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers. PhD thesis, EPFL, Lausanne

    Google Scholar 

  14. Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of rhonegletscher from 1874 to 2100. J Comput Phys 228(17):6426–6439

    Article  MATH  MathSciNet  Google Scholar 

  15. Jouvet G, Huss M, Funk M, Blatter H (2011) Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate. J Glaciol 57(206):1033–1045

    Article  Google Scholar 

  16. Jouvet G, Picasso M, Rappaz J, Blatter H (2008) A new algorithm to simulate the dynamics of a glacier: theory and applications. J Glaciol 54(188):801–811

    Article  Google Scholar 

  17. Jouvet G, Rappaz J (2011) Analysis and finite element approximation of a nonlinear stationary Stokes problem arising in glaciology. Adv Numer Anal Art ID 164581, 24 pp

    Google Scholar 

  18. Maronnier V, Picasso M, Rappaz J (2003) Numerical simulation of three-dimensional free surface flows. Internat J Numer Methods Fluids 42(7):697–716

    Article  MATH  MathSciNet  Google Scholar 

  19. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31:567–603

    Article  MathSciNet  Google Scholar 

  20. Schoof C (2010) Coulomb friction and other sliding laws in a higher-order glacier flow model. Math Models Methods Appl Sci 20(1):157–189

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author was supported by the Deutsche Forschungsgemeinschaft (project KL 1806 5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Jouvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jouvet, G., Rappaz, J. (2014). Numerical Analysis and Simulation of the Dynamics of Mountain Glaciers. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Pironneau, O. (eds) Modeling, Simulation and Optimization for Science and Technology. Computational Methods in Applied Sciences, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9054-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9054-3_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9053-6

  • Online ISBN: 978-94-017-9054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics