Skip to main content

An Augmented Lagrangian Method for the Microstructure of a Liquid Crystal Model

  • Chapter
  • First Online:
  • 1667 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 34))

Abstract

The liquid crystal microstructure is obtained by minimizing the so-called Oseen-Frank energy functional. The liquid crystal molecule is assumed to be of unit length. It is important to deal with the unit length constraint since it is a main reason for orientation singularities of liquid crystal molecules. For a better understanding of complicated orientation singularities associated with the microstructure, simplified models resulted from specific choices of elastic constants are always of interest. In this paper an augmented Lagrangian method together with an explicit-implicit scheme is used to compute the solution of a liquid crystal system based on a simplified Oseen-Frank energy functional. The augmented Lagrangian method is used to deal with the unit-length constraint of liquid crystal molecules, where the penalty parameter need not be small so the resulting system may be more stable/less stiff than the penalty method. Unlike the projection method its energy functional would not go up and down dramatically during the minimization process. The explicit-implicit scheme allows a matrix free implementation in the pseudo-time gradient flow minimization process. Numerical examples in domains of typical shapes (circle, square and rectangle) and with various rotational boundary conditions are computed and computational results are compared with those obtained by the penalty method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alouges F (1997) A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J Numer Anal 34(5):1708–1726

    Google Scholar 

  2. Ascher UM, Lin P (1996) Sequential regularization methods for higher index DAEs with constraint singularities: the linear index-2 case. SIAM J Numer Anal 33(5):1921–1940

    Article  MATH  MathSciNet  Google Scholar 

  3. Aviles P, Giga Y (1999) On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc R Soc Edinburgh Sect A 129(1):1–17

    Article  MATH  MathSciNet  Google Scholar 

  4. Aviles P, Giga Y (1987) A mathematical problem related to the physical theory of liquid crystal configurations. In: Miniconference on geometry and partial differential equations, 2 (Canberra, 1986), Proceedings of the centre for mathematical analysis Australian National University, vol 12. Australian National University, Canberra, pp 1–16

    Google Scholar 

  5. Cohen R, Lin SY, Luskin M (1989) Relaxation and gradient methods for molecular orientation in liquid crystals. Comput Phys Comm 53(1–3):455–465

    Article  MathSciNet  Google Scholar 

  6. Cohen R, Hardt R, Kinderlehrer D, Lin SY, Luskin M (1987) Minimum energy configurations for liquid crystals: computational results. In: Theory and applications of liquid crystals (Minneapolis, Minn, 1985), IMA Vol Math Appl, vol 5. Springer, New York, pp 99–121

    Google Scholar 

  7. Du Q, Guo B, Shen J (2001) Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J Numer Anal 39(3):735–762

    Article  MATH  MathSciNet  Google Scholar 

  8. Frank FC (1958) On the theory of liquid crystals. Discuss Faraday Soc 25:19–28

    Article  Google Scholar 

  9. de Gennes PG (1972) An analogy between superconductors and smectics A. Solid State Comm 10(9):753–756

    Article  Google Scholar 

  10. de Gennes PG, Prost J (1995) The physics of liquid crystals, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  11. Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM studies in applied mathematics, vol 9. SIAM, Philadelphia, PA

    Book  Google Scholar 

  12. Glowinski R, Lin P, Pan XB (2003) An operator-splitting method for a liquid crystal model. Comput Phys Commun 152(3):242–252

    Article  Google Scholar 

  13. Hardt R, Kinderlehrer D, Lin FH (1986) Existence and partial regularity of static liquid crystal configurations. Comm Math Phys 105(4):547–570

    Article  MATH  MathSciNet  Google Scholar 

  14. Hardt R, Kinderlehrer D (1987) Mathematical questions of liquid crystal theory. In: Theory and applications of liquid crystals (Minneapolis, Minn., 1985), IMA Volume Mathematics Application, vol 5. Springer, New York, pp 151–184

    Google Scholar 

  15. Hecht F, Pironneau O, Hyaric AL, Ohtsuka K (2013): Freefem++ (version 3.25). http://www.freefem.org/ff++/main.php

  16. Hu Q, Tai XC, Winther R (2009) A saddle point approach to the computation of harmonic maps. SIAM J Numer Anal 47(2):1500–1523

    Article  MATH  MathSciNet  Google Scholar 

  17. Hua J, Lin P, Liu C, Wang Q (2011) Energy law preserving \(C^0\) finite element schemes for phase field models in two-phase flow computations. J Comput Phys 230(19):7115–7131

    Article  MATH  MathSciNet  Google Scholar 

  18. Jin W, Kohn RV (2000) Singular perturbation and the energy of folds. J Nonlinear Sci 10(3):355–390

    Article  MATH  MathSciNet  Google Scholar 

  19. Kunisch K, Tai XC (1997) Sequential and parallel splitting methods for bilinear control problems in Hilbert spaces. SIAM J Numer Anal 34(1):91–118

    Article  MATH  MathSciNet  Google Scholar 

  20. Liang KW, Lin P, Lu XL (2013) Error analysis of semidiscrete schemes for a liquid crystal model. Submitted (2013)

    Google Scholar 

  21. Lin FH (1989) Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Comm Pure Appl Math 42(6):789–814

    Article  MATH  MathSciNet  Google Scholar 

  22. Lin P (1997) A sequential regularization method for time-dependent incompressible Navier-Stokes equations. SIAM J Numer Anal 34(3):1051–1071

    Article  MATH  MathSciNet  Google Scholar 

  23. Lin P, Liu C (2006) Simulations of singularity dynamics in liquid crystal flows: a \(C^0\) finite element approach. J Comput Phys 215(1):348–362

    Article  MATH  MathSciNet  Google Scholar 

  24. Lin P, Liu C, Zhang H (2007) An energy law preserving \(C^0\) finite element scheme for simulating the kinematic effects in liquid crystal flow dynamics. J Comput Phys 227(2):1411–1427

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin P, Richter T (2007) An adaptive homotopy multi-grid method for molecule orientations of high dimensional liquid crystals. J Comput Phys 225(2):2069–2082

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu C, Walkington NJ (2000) Approximation of liquid crystal flows. SIAM J Numer Anal 37(3):725–741

    Article  MATH  MathSciNet  Google Scholar 

  27. Lu X, Lin P, Liu JG (2008) Analysis of a sequential regularization method for the unsteady Navier-Stokes equations. Math Comp 77(263):1467–1494

    Article  MATH  MathSciNet  Google Scholar 

  28. Lysaker M, Osher S, Tai XC (2003) Noise removal using smoothed normals and surface fitting. UCLA computational and applied mathematics reports UCLA-CAM-03-03, University of California, USA

    Google Scholar 

  29. Pan XB, Qi Y (2000) Asymptotics of minimizers of variational problems involving curl functional. J Math Phys 41(7):5033–5063

    Article  MATH  MathSciNet  Google Scholar 

  30. Rosman G, Wang Y, Tai XC, Kimmel R, Bruckstein AM (2011) Fast regularization of matrix-valued images. UCLA computational and applied mathematics reports UCLA-CAM-11-87, University of California, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Cheng Tai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lin, P., Tai, XC. (2014). An Augmented Lagrangian Method for the Microstructure of a Liquid Crystal Model. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Pironneau, O. (eds) Modeling, Simulation and Optimization for Science and Technology. Computational Methods in Applied Sciences, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9054-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9054-3_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9053-6

  • Online ISBN: 978-94-017-9054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics