Skip to main content

On an Extension of the First Korn Inequality to Incompatible Tensor Fields on Domains of Arbitrary Dimensions

  • Chapter
  • First Online:
  • 1656 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 34))

Abstract

For a bounded domain \(\varOmega \) in \(\mathbb {R}^N\) with Lipschitz boundary \(\varGamma =\partial \varOmega \) and a relatively open and non-empty subset \(\varGamma _t\) of \(\varGamma \), we prove the existence of a positive constant \(c\) such that inequality \( c\Vert T\Vert _{\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N})} \le \Vert {{\mathrm{sym}}}T\Vert _{\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N})} +\Vert {{\mathrm{Curl}}}T\Vert _{\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N(N-1)/2})}\) holds for all tensor fields \(T \in \overset{\circ }{\mathsf {H}}({{\mathrm{Curl}}};\varGamma _t,\varOmega ,\mathbb {R}^{N\times N})\), this is, for all \(T:\varOmega \rightarrow \mathbb {R}^{N\times N}\) which are square-integrable and possess a row-wise square-integrable rotation tensor field \({{\mathrm{Curl}}}T:\varOmega \rightarrow \mathbb {R}^{N\times N(N-1)/2}\) and vanishing row-wise tangential trace on \(\varGamma _t\). For compatible tensor fields \(T=\nabla { v}\) with \({ v}\in \mathsf {H}^1(\varOmega ,\mathbb {R}^N)\) having vanishing tangential Neumann trace on \(\varGamma _t\) the inequality reduces to a non-standard variant of the first Korn inequality since \({{\mathrm{Curl}}}T=0\), while for skew-symmetric tensor fields \(T\) the Poincaré inequality is recovered. If \(\varGamma _t=\emptyset \), our estimate still holds at least for simply connected \(\varOmega \) and for all tensor fields \(T \in \mathsf {H}({{\mathrm{Curl}}};\varOmega ,\mathbb {R}^{N\times N})\) which are \(\mathsf {L}^2(\varOmega ,\mathbb {R}^{N\times N})\)-perpendicular to \({{\mathrm{\mathfrak {so}}}}(N)\), i.e., to all skew-symmetric constant tensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The precise meaning of ‘admissible’ will be given in Definition 8.5.

  2. 2.

    alternating differential forms of \({{\mathrm{rank}}}q\in \{0,\dots ,N\}\)

  3. 3.

    Sometimes, the Jacobian \(J_{v}\) is also denoted by \(\nabla v\).

  4. 4.

    Note that \({{\mathrm{sym}}}T\) and \({{\mathrm{skew}}}T\) are point-wise orthogonal with respect to the standard inner product in \(\mathbb {R}^{N\times N}\).

References

  1. Brown R (1994) The mixed problem for Laplace’s equation in a class of Lipschitz domains. Comm Partial Differ Equ 19(7–8):1217–1233

    Article  MATH  Google Scholar 

  2. Costabel M (1990) A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math Methods Appl Sci 12(4):365–368

    Article  MATH  MathSciNet  Google Scholar 

  3. Gol’dshtein V, Mitrea I, Mitrea M (2011) Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. J Math Sci 172(3):347–400

    Article  MATH  MathSciNet  Google Scholar 

  4. Jakab T, Mitrea I, Mitrea M (2009) On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ Math J 58(5):2043–2071

    Article  MATH  MathSciNet  Google Scholar 

  5. Jochmann F (1997) A compactness result for vector fields with divergence and curl in \({L}^q({\Omega })\) involving mixed boundary conditions. Appl Anal 66(1–2):189–203

    Article  MathSciNet  Google Scholar 

  6. Kuhn P (2000) Die Maxwellgleichung mit wechselnden Randbedingungen. Ph.D. thesis, Universität Essen, Aachen. ArXiv:1108.2028.

  7. Kuhn P, Pauly D (2010) Regularity results for generalized electro-magnetic problems. Analysis (Munich) 30(3):225–252

    MATH  MathSciNet  Google Scholar 

  8. Leis R (1968) Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math Z 106:213–224

    Article  MathSciNet  Google Scholar 

  9. Leis R (1971) Zur Theorie der zeitunabhängigen Maxwellschen Gleichungen. Gesellschaft für Mathematik und Datenverarbeitung, Bonn

    Google Scholar 

  10. Leis R (1986) Initial-boundary value problems in mathematical physics. Wiley, Stuttgart/Chichester

    Book  MATH  Google Scholar 

  11. Neff P, Pauly D, Witsch KJ (2011) A canonical extension of Korn’s first inequality to H(Curl) motivated by gradient plasticity with plastic spin. C R Acad Sci Paris 349(23–24):1251–1254

    Article  MATH  MathSciNet  Google Scholar 

  12. Neff P, Pauly D, Witsch KJ (2011) A Korn’s inequality for incompatible tensor fields. Proc Appl Math Mech (PAMM) 11(1):683–684

    Article  Google Scholar 

  13. Neff P, Pauly D, Witsch KJ (2012) Maxwell meets Korn: A new coercive inequality for tensor fields in \(\mathbb{R}^{N\times N}\) with square-integrable exterior derivative. Math Methods Appl Sci 35(1):65–71

    Article  MATH  MathSciNet  Google Scholar 

  14. Neff P, Pauly D, Witsch KJ (2012) On a canonical extension of Korn’s first and Poincaré’s inequalities to H(Curl). J Math Sci (NY) 185(5):721–727

    Google Scholar 

  15. Neff P, Pauly D, Witsch KJ (2012) Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor fields. J Diff Eqn. arXiv:1203.2744

  16. Pauly D (2006) Low frequency asymptotics for time-harmonic generalized Maxwell’s equations in nonsmooth exterior domains. Adv Math Sci Appl 16(2):591–622

    MATH  MathSciNet  Google Scholar 

  17. Pauly D (2007) Generalized electro-magneto statics in nonsmooth exterior domains. Analysis (Munich) 27(4):425–464

    MATH  MathSciNet  Google Scholar 

  18. Pauly D (2008) Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains. Asymptot Anal 60(3–4):125–184

    MATH  MathSciNet  Google Scholar 

  19. Pauly D (2008) Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media. Math Methods Appl Sci 31(13):1509–1543

    Article  MATH  MathSciNet  Google Scholar 

  20. Picard R (1981) Randwertaufgaben in der verallgemeinerten Potentialtheorie. Math Methods Appl Sci 3(1):218–228

    Article  MATH  MathSciNet  Google Scholar 

  21. Picard R (1982) On the boundary value problems of electro- and magnetostatics. Proc R Soc Edinburgh Sect A 92(1–2):165–174

    Article  MATH  MathSciNet  Google Scholar 

  22. Picard R (1984) An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math Z 187(2):151–164

    Article  MATH  MathSciNet  Google Scholar 

  23. Picard R (1984) On the low frequency asymptotics in electromagnetic theory. J Reine Angew Math 354:50–73

    MATH  MathSciNet  Google Scholar 

  24. Picard R (1990) Some decomposition theorems and their application to non-linear potential theory and Hodge theory. Math Methods Appl Sci 12(1):35–52

    Article  MathSciNet  Google Scholar 

  25. Picard R, Weck N, Witsch KJ (2001) Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich) 21(3):231–263

    MATH  MathSciNet  Google Scholar 

  26. Pompe W (2003) Korn’s first inequality with variable coefficients and its generalization. Comment Math Univ Carolin 44(1):57–70

    MATH  MathSciNet  Google Scholar 

  27. Saranen J (1980) Über das Verhalten der Lösungen der Maxwellschen Randwertaufgabe in Gebieten mit Kegelspitzen. Math Methods Appl Sci 2(2):235–250

    Article  MATH  MathSciNet  Google Scholar 

  28. Saranen J (1981) Über das Verhalten der Lösungen der Maxwellschen Randwertaufgabe in einigen nichtglatten Gebieten. Ann Acad Sci Fenn Ser A I Math 6(1):15–28

    MATH  MathSciNet  Google Scholar 

  29. Weber C (1980) A local compactness theorem for Maxwell’s equations. Math Methods Appl Sci 2(1):12–25

    Article  MATH  MathSciNet  Google Scholar 

  30. Weck N (1974) Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries. J Math Anal Appl 46:410–437

    Article  MATH  MathSciNet  Google Scholar 

  31. Witsch KJ (1993) A remark on a compactness result in electromagnetic theory. Math Methods Appl Sci 16(2):123–129

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We heartily thank Kostas Pamfilos for the beautiful pictures of 3D sliceable domains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Pauly .

Editor information

Editors and Affiliations

Appendix: Construction of Hodge-Helmholtz Projections

Appendix: Construction of Hodge-Helmholtz Projections

We want to point out how to compute the projections in the Hodge-Helmholtz decompositions in Lemma 8.2. Recalling from Lemma 8.2 the orthogonal decompositions

$$\begin{aligned} \mathsf {L}^{2,q}(\varOmega )&= \mathrm{{d}}\overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega ) \oplus \overset{\circ }{\Delta }{}_0^q(\varGamma _n,\varOmega ) \\&= \overset{\circ }{\mathsf {D}}{}_0^q(\varGamma _t,\varOmega ) \oplus \delta \overset{\circ }{\Delta }{}^{q+1}(\varGamma _n,\varOmega ) \\&= \mathrm{{d}}\overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega ) \oplus \fancyscript{H}^q(\varOmega ) \oplus \delta \overset{\circ }{\Delta }{}^{q+1}(\varGamma _n,\varOmega ), \end{aligned}$$

we denote the corresponding \(\mathsf {L}^{2,q}(\varOmega )\)-orthogonal projections by \(\pi _{\mathrm{{d}}}\), \(\pi _{\delta }\) and \(\pi _{\fancyscript{H}}\). Then, we have

$$ \pi _{\fancyscript{H}}={{\mathrm{id}}}-\pi _{\mathrm{{d}}}-\pi _{\delta } $$

and

$$\begin{aligned} \pi _{\mathrm{{d}}}\mathsf {L}^{2,q}(\varOmega )&= \mathrm{{d}}\overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega ) =\mathrm{{d}}\mathsf {X}^{q-1}(\varOmega ),&\mathsf {X}^{q-1}(\varOmega )&:= \overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega ) \cap \delta \overset{\circ }{\Delta }{}^q(\varGamma _n,\varOmega ), \\ \pi _{\delta }\mathsf {L}^{2,q}(\varOmega )&= \delta \overset{\circ }{\Delta }{}^{q+1}(\varGamma _n,\varOmega ) =\delta \mathsf {Y}^{q+1}(\varOmega ),&\mathsf {Y}^{q+1}(\varOmega )&:= \overset{\circ }{\Delta }{}^{q+1}(\varGamma _n,\varOmega ) \cap \mathrm{{d}}\overset{\circ }{\mathsf {D}}{}^q(\varGamma _t,\varOmega ), \\ \pi _{\fancyscript{H}}\mathsf {L}^{2,q}(\varOmega )&= \fancyscript{H}^q(\varOmega ). \end{aligned}$$

By the Poincaré estimate, i.e., Lemma 8.1, we have

$$\begin{aligned} \forall E&\in \mathsf {X}^{q-1}(\varOmega ) \quad&\Vert E\Vert _{\mathsf {L}^{2,q-1}(\varOmega )}&\le c_{\mathtt {p},q-1}\Vert \mathrm{{d}}E\Vert _{\mathsf {L}^{2,q}(\varOmega )}, \end{aligned}$$
(8.9)
$$\begin{aligned} \forall H&\in \mathsf {Y}^{q+1}(\varOmega ) \quad&\Vert H\Vert _{\mathsf {L}^{2,q+1}(\varOmega )}&\le c_{\mathtt {p},q+1}\Vert \delta H\Vert _{\mathsf {L}^{2,q}(\varOmega )}. \end{aligned}$$
(8.10)

Hence, the bilinear forms

$$ \left( \tilde{E},E\right) \mapsto \left\langle \mathrm{{d}}\tilde{E},\mathrm{{d}}E \right\rangle _{\mathsf {L}^{2,q}(\varOmega )}, \quad \left( \tilde{H},H\right) \mapsto \left\langle \delta \tilde{H},\delta H \right\rangle _{\mathsf {L}^{2,q}(\varOmega )} $$

are continuous and coercive over \(\mathsf {X}^{q-1}(\varOmega )\) and \(\mathsf {Y}^{q+1}(\varOmega )\), respectively. Moreover, for any \(F\in \mathsf {L}^{2,q}(\varOmega )\) the linear functionals

$$ E \mapsto \langle F,\mathrm{{d}}E \rangle _{\mathsf {L}^{2,q}(\varOmega )}, \quad H \mapsto \langle F,\delta H \rangle _{\mathsf {L}^{2,q}(\varOmega )} $$

are continuous over \(\mathsf {X}^{q-1}(\varOmega )\), respectively \(\mathsf {Y}^{q+1}(\varOmega )\). Thus, by the Lax-Milgram theorem we get unique solutions \(E_{\mathrm{{d}}}\in \mathsf {X}^{q-1}(\varOmega )\) and \(H_{\delta }\in \mathsf {Y}^{q+1}(\varOmega )\) of the two variational problems

$$\begin{aligned} \langle \mathrm{{d}}E_{\mathrm{{d}}},\mathrm{{d}}E \rangle _{\mathsf {L}^{2,q}(\varOmega )}&= \langle F,\mathrm{{d}}E \rangle _{\mathsf {L}^{2,q}(\varOmega )} \quad&\forall E\in \mathsf {X}^{q-1}(\varOmega ), \end{aligned}$$
(8.11)
$$\begin{aligned} \langle \delta H_{\delta },\delta H \rangle _{\mathsf {L}^{2,q}(\varOmega )}&= \langle F,\delta H \rangle _{\mathsf {L}^{2,q}(\varOmega )} \quad&\forall H\in \mathsf {Y}^{q+1}(\varOmega ) \end{aligned}$$
(8.12)

and the corresponding solution operators, mapping \(F\) to \(E_{\mathrm{{d}}}\) and \(H_{\delta }\), respectively, are continuous. In fact, we have as usual

$$ \Vert \mathrm{{d}}E_{\mathrm{{d}}}\Vert _{\mathsf {L}^{2,q}(\varOmega )} \le \Vert F\Vert _{\mathsf {L}^{2,q}(\varOmega )}, \quad \Vert \delta H_{\delta }\Vert _{\mathsf {L}^{2,q}(\varOmega )} \le \Vert F\Vert _{\mathsf {L}^{2,q}(\varOmega )}, $$

respectively, and therefore together with (8.9) and (8.10)

$$\begin{aligned} \Vert E_{\mathrm{{d}}}\Vert _{\mathsf {X}^{q-1}(\varOmega )}&= \Vert E_{\mathrm{{d}}}\Vert _{\mathsf {D}^{q-1}(\varOmega )} \le \sqrt{1+c_{\mathtt {p},q-1}^2}\Vert F\Vert _{\mathsf {L}^{2,q}(\varOmega )},\\ \Vert H_{\delta }\Vert _{\mathsf {Y}^{q+1}(\varOmega )}&= \Vert H_{\delta }\Vert _{\varDelta ^{q+1}(\varOmega )} \le \sqrt{1+c_{\mathtt {p},q+1}^2}\Vert F\Vert _{\mathsf {L}^{2,q}(\varOmega )}. \end{aligned}$$

Since \(\mathrm{{d}}\overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega )=\mathrm{{d}}\mathsf {X}^{q-1}(\varOmega )\) and \(\delta \overset{\circ }{\varDelta }{}^{q+1}(\varGamma _n,\varOmega )=\delta \mathsf {Y}^{q+1}(\varOmega )\) we see that (8.11) and (8.12) hold also for \(E\in \overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega )\) and \(H\in \overset{\circ }{\varDelta }{}^{q+1}(\varGamma _n,\varOmega )\), respectively, and that

$$\begin{aligned} F-\mathrm{{d}}E_{\mathrm{{d}}}&\in \big (\mathrm{{d}}\mathsf {X}^{q-1}(\varOmega )\big )^{\bot } =\big (\mathrm{{d}}\overset{\circ }{\mathsf {D}}{}^{q-1}(\varGamma _t,\varOmega )\big )^{\bot }=\overset{\circ }{\varDelta }{}_0^q(\varGamma _n,\varOmega ),\\ F-\delta H_{\delta }&\in \big (\delta \mathsf {Y}^{q+1}(\varOmega )\big )^{\bot } =\big (\delta \overset{\circ }{\varDelta }{}^{q+1}(\varGamma _n,\varOmega )\big )^{\bot }=\overset{\circ }{\mathsf {D}}{}_0^q(\varGamma _t,\varOmega ). \end{aligned}$$

Hence, we have found our projections since

$$\begin{aligned} \pi _{\mathrm{{d}}}F&:= \mathrm{{d}}E_{\mathrm{{d}}}\in \mathrm{{d}}\mathsf {X}^{q-1}(\varOmega )\subset \overset{\circ }{\mathsf {D}}{}_0^q(\varGamma _t,\varOmega ),\\ \pi _{\delta }F&:= \delta H_{\delta }\in \delta \mathsf {Y}^{q+1}(\varOmega )\subset \overset{\circ }{\varDelta }{}_0^q(\varGamma _n,\varOmega ) \end{aligned}$$

and

$$ \pi _{\fancyscript{H}}F:=F-\mathrm{{d}}E_{\mathrm{{d}}}-\delta H_{\delta } \in \overset{\circ }{\mathsf {D}}{}_0^q(\varGamma _t,\varOmega )\cap \overset{\circ }{\Delta }{}_0^q(\varGamma _n,\varOmega )=\fancyscript{H}^q(\varOmega ). $$

Explicit formulas for the dimensions of \(\fancyscript{H}^q(\varOmega )\) or explicit constructions of bases of \(\fancyscript{H}^q(\varOmega )\) depending on the topology of the pair \((\varOmega ,\varGamma _t)\) can be found, e.g., in [21] for the case \(\varGamma _t=\varGamma \) or \(\varGamma _t=\emptyset \), or in [3] for the general case.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Neff, P., Pauly, D., Witsch, KJ. (2014). On an Extension of the First Korn Inequality to Incompatible Tensor Fields on Domains of Arbitrary Dimensions. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Pironneau, O. (eds) Modeling, Simulation and Optimization for Science and Technology. Computational Methods in Applied Sciences, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9054-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9054-3_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9053-6

  • Online ISBN: 978-94-017-9054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics