Skip to main content

Probing How Defects in Self-assembled Monolayers Affect Peptide Adsorption with Molecular Simulation

  • Chapter
  • First Online:
Foundations of Molecular Modeling and Simulation

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

Due to their flexible chemical functionality and simple formulation, self-assembled monolayer (SAM) surfaces have become an ideal choice for a multitude of wide-ranging applications. However, a major issue in the preparation of SAM surfaces is naturally occurring defects that manifest in a number of different ways, including depressions in the underlying gold substrate that cause surface roughness or through incorrect self-assembly of the chains that causes domain boundary effects. Molecular simulations can provide valuable insight into the origins of these defects and the effect they have on biological and other processes. Molecular dynamics (MD) simulations have been performed on a SAM surface with a carboxylic acid/carboxylate terminal functionality and induced with two types of experimentally observed defects. The enhanced sampling method PTMetaD-WTE has been used to model the adsorption of LKα14 onto the two types of defective SAM surfaces and onto a control SAM surface with no defective chains. An advanced clustering algorithm has been used to elucidate the effect of the surface defects on the conformations of the adsorbed peptide. Results show significant structural differences arise as a result of the defects. Specifically, both types of defects lead to a near-complete loss of secondary structure of the adsorbed peptide as compared to the control simulation, in which LKα14 adopts a perfect helical structure at the SAM/water interface. On the surface with domain boundary effects, extended conformations of the peptide are stabilized, whereas on the SAM with surface roughness (i.e., chains of various lengths), random coil conformations dominate the ensemble of surface-bound structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDermott, C.A., McDermott, M.T., Green, J.-B., Porter, M.D.: Structural origins of the surface depressions at alkanethiolate monolayers on Au(111): a scanning tunneling and atomic force microscopic investigation. J. Phys. Chem. 99, 13257–13267 (1995)

    Article  CAS  Google Scholar 

  2. Noh, J., Hara, M.: Molecular-scale desorption processes and the alternating missing-row phase of alkanethiol self-assembled monolayers on Au(111). Langmuir 17, 7280–7285 (2001)

    Article  CAS  Google Scholar 

  3. Godin, M., Williams, P.J., Tabard-Cossa, V., Laroche, O., Beaulieu, L.Y., Lennox, R.B., Grütter, P.: Surface stress, kinetics, and Structure of alkanethiol self-assembled monolayers. Langmuir 20, 7090–7096 (2004)

    Article  CAS  Google Scholar 

  4. Gannon, G., Greer, J.C., Larsson, J.A., Thompson, D.: Molecular dynamics study of naturally occurring defects in self-assembled monolayer formation. ACS Nano 4, 921–932 (2010)

    Article  CAS  Google Scholar 

  5. Vemparala, S., Karki, B.B., Kalia, R.K., Nakano, A., Vashishta, P.: Large-scale molecular dynamics simulations of alkanethiol self-assembled monolayers. J. Chem. Phys. 121, 4323–4330 (2004)

    Article  CAS  Google Scholar 

  6. Prathima, N., Harini, M., Rai, N., Chandrashekara, R.H., Ayappa, K.G., Sampath, S., Biswas, S.K.: thermal study of accumulation of conformational disorders in the self-assembled monolayers of C8 and C18 alkanethiols on the Au(111) surface. Langmuir 21, 2364–2374 (2005)

    Article  CAS  Google Scholar 

  7. Jiang, L., Sangeeth, C.S.S., Yuan, L., Thompson, D., Nijhuis, C.A.: One-nanometer thin monolayers remove the deleterious effect of substrate defects in molecular tunnel junctions. Nano Lett. (2015)

    Google Scholar 

  8. O’Mahony, S., O’Dwyer, C., Nijhuis, C.A., Greer, J.C., Quinn, A.J., Thompson, D.: Nanoscale dynamics and protein adhesivity of alkylamine self-assembled monolayers on graphene. Langmuir 29, 7271–7282 (2013)

    Article  Google Scholar 

  9. Ahn, Y., Saha, J.K., Schatz, G.C., Jang, J.: Molecular dynamics study of the formation of a self-assembled monolayer on gold. J. Phys. Chem. C 115, 10668–10674 (2011)

    Article  CAS  Google Scholar 

  10. Deighan, M., Bonomi, M., Pfaendtner, J.: Efficient simulation of explicitly solvated proteins in the well-tempered ensemble. JCTC 8, 2189–2192 (2012)

    CAS  Google Scholar 

  11. Deighan, M., Pfaendtner, J.: Exhaustively sampling peptide adsorption with metadynamics. Langmuir 29, 7999–8009 (2013)

    Article  CAS  Google Scholar 

  12. Levine, Z.A., Fischer, S.A., Shea, J.-E., Pfaendtner, J.: Trp-Cage folding on organic surfaces. J. Phys. Chem. B. 119, 10417–10425 (2015)

    Article  CAS  Google Scholar 

  13. DeGrado, W.F., Lear, J.D.: Induction of peptide conformation at apolar water interfaces. 1. a study with model peptides of defined hydrophobic periodicity. J. Am. Chem. Soc. 107, 7684–7689 (1985)

    Article  CAS  Google Scholar 

  14. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graphics. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  15. Weidner, T., Samuel, N.T., McCrea, K., Gamble, L.J., Ward, R.S., Castner, D.G.: Assembly and structure of α-helical peptide films on hydrophobic fluorocarbon surfaces. Biointerphases 5, 9–16 (2010)

    Article  CAS  Google Scholar 

  16. Weidner, T., Apte, J.S., Gamble, L.J., Castner, D.G.: Probing the orientation and conformation of α-helix and β-strand model peptides on self-assembled monolayers using sum frequency generation and nexafs spectroscopy. Langmuir 26, 3433–3440 (2010)

    Article  CAS  Google Scholar 

  17. Mermut, O., Phillips, D.C., York, R.L., McCrea, K.R., Ward, R.S., Somorjai, Ga: In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 128, 3598–3607 (2006)

    Article  CAS  Google Scholar 

  18. York, R.L., Browne, W.K., Geissler, P.L., Somorjai, G.A.: Peptides adsorbed on hydrophobic surfaces—a sum frequency generation vibrational spectroscopy and modeling study. Isr. J. Chem. 47, 51–58 (2007)

    Article  CAS  Google Scholar 

  19. York, R.L., Mermut, O., Phillips, D.C., McCrea, K.R., Ward, R.S., Somorjai, G.A.: Influence of ionic strength on the adsorption of a model peptide on hydrophilic silica and hydrophobic polystyrene surfaces: insight from SFG vibrational spectroscopy. J. Phys. Chem. C 111, 8866–8871 (2007)

    Article  CAS  Google Scholar 

  20. Apte, J.S., Gamble, L.J., Castner, D.G., Campbell, C.T.: Kinetics of leucine-lysine peptide adsorption and desorption at -CH3 and -COOH terminated alkylthiolate monolayers. Biointerphases 5, 97–104 (2010)

    Article  CAS  Google Scholar 

  21. Long, J.R., Oyler, N., Drobny, G.P., Stayton, P.S.: Assembly of α-helical peptide coatings on hydrophobic surfaces. J. Am. Chem. Soc. 124, 6297–6303 (2002)

    Article  CAS  Google Scholar 

  22. Phillips, D.C., York, R.L., Mermut, O., McCrea, K.R., Ward, R.S., Somorjai, G.A.: Side chain, chain length, and sequence effects on amphiphilic peptide adsorption at hydrophobic and hydrophilic surfaces studied by sum-frequency generation vibrational spectroscopy and quartz crystal microbalance. J. Phys. Chem. C 111, 255–261 (2007)

    Article  CAS  Google Scholar 

  23. Apte, J.S., Collier, G., Latour, R.A., Gamble, L.J., Castner, D.G.: XPS and ToF-SIMS investigation of α-helical and β-strand peptide adsorption onto SAMs. Langmuir 26, 3423–3432 (2010)

    Article  CAS  Google Scholar 

  24. Fears, K.P., Creager, S.E., Latour, R.A.: Determination of the surface pK of carboxylic- and amine-terminated alkanethiols using surface plasmon resonance spectroscopy. Langmuir 24, 837–843 (2008)

    Article  CAS  Google Scholar 

  25. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E.: improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78, 1950–1958 (2010)

    CAS  Google Scholar 

  26. Ulman, A., Eilers, J.E., Tillman, N.: Packing and molecular orientation of alkanethiol monolayers on gold surfaces. Langmuir 5, 1147–1152 (1989)

    Article  CAS  Google Scholar 

  27. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

  28. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. JCTC. 4, 435–447 (2008)

    CAS  Google Scholar 

  29. Tribello, G.A., Bonomi, M., Branduardi, D., Camilloni, C., Bussi, G.: PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014)

    Article  CAS  Google Scholar 

  30. Laio, A., Parrinello, M.: Escaping free-energy minima. PNAS 99, 12562–12566 (2002)

    Article  CAS  Google Scholar 

  31. Barducci, A., Pfaendtner, J., Bonomi, M.: Tackling sampling challenges in biomolecular simulations. Methods Mol. Bio. 1215, 151–171 (2015)

    Article  CAS  Google Scholar 

  32. Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008)

    Article  Google Scholar 

  33. Dama, J.F., Parrinello, M., Voth, G.A.: Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 112, 240602 (2014)

    Article  Google Scholar 

  34. Hansmann, U.H.E.: Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281, 140–150 (1997)

    Article  CAS  Google Scholar 

  35. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)

    Article  CAS  Google Scholar 

  36. Bussi, G., Gervasio, F., Laio, A., Parrinello, M.: Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128, 13435 (2006)

    Article  CAS  Google Scholar 

  37. Bonomi, M., Parrinello, M.: Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104, 190601 (2010)

    Article  CAS  Google Scholar 

  38. Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W.F., Mark, A.E.: peptide folding: when simulation meets experiment. Angew. Chem. Int. Ed. 38, 236–240 (1999)

    Article  CAS  Google Scholar 

  39. Branduardi, D., Bussi, G., Parrinello, M.: Metadynamics with adaptive Gaussians. JCTC 8, 2247–2254 (2012)

    CAS  Google Scholar 

  40. Torrie, G.M., Valleau, J.P.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977)

    Article  Google Scholar 

  41. Thyparambil, A.A., Wei, Y., Latour, R.A.: Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM. Langmuir 28, 5687–5694 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JP and KGS acknowledge financial support from NSF award CBET-1264459. This work was facilitated through the use of computational, storage, and networking infrastructure provided by the Hyak supercomputer system, supported in part by the University of Washington and the UW Student Technology Fee Proposal program (award 2015-028). This research was also supported by the National Natural Science Foundation of China through grant numbers 21450110411, 21476191, and 91434110, and by the Scientific Research Fund of the Zhejiang Provincial Education Department through grant number Y201329422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Pfaendtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sprenger, K., He, Y., Pfaendtner, J. (2016). Probing How Defects in Self-assembled Monolayers Affect Peptide Adsorption with Molecular Simulation. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_2

Download citation

Publish with us

Policies and ethics