Skip to main content

Elliptic Curve Based Secure Outsourced Computation in Multi-party Cloud Environment

  • Conference paper
  • First Online:
Book cover Security in Computing and Communications (SSCC 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 625))

Included in the following conference series:

  • 876 Accesses

Abstract

Secure Multi-Party Computation (SMPC) is a scheme where a set of trusted users will calculate a certain function on their inputs where the inputs will be always in an encrypted format for security purpose. In many cases, outsourcing of these calculations to an untrusted cloud server is desirable because of huge computational power of cloud server and storage space provided by them to process the data. However, the existing secure computation approaches are based on either a single key setup or old traditional encryption methods. In this paper, we suggested two secure multi-party computation techniques based on the latest elliptic curve cryptosystem. In which, we used two non-colluding cloud servers to co-operatively compute the outsourcing calculation with minimum number of interactions between them. However, it is ensured that the inputs, intermediate and final results all remain secret throughout the calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, D., Shi, E., Fischer, I., Shankar, U.: Cloud data protection for the masses. IEEE Comput. 45(1), 39–45 (2012)

    Article  Google Scholar 

  2. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012)

    Article  Google Scholar 

  3. L´opez, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of STOC 2012 (2012)

    Google Scholar 

  4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of STOC 2009 (2009)

    Google Scholar 

  5. Brakerski Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Proceedings of FOCS 2011 (2011)

    Google Scholar 

  6. Yao, A.: Protocols for secure computations. In: Proceedings of FOCS, pp. 160–164 (1982)

    Google Scholar 

  7. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of STOC 2013 (2013)

    Google Scholar 

  8. Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058 (2013)

    Article  Google Scholar 

  9. Bresson, Emmanuel, Catalano, Dario, Pointcheval, David: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, Chi-Sung (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of STOC, pp. 11–19 (1988)

    Google Scholar 

  11. Bendlin, Rikke, Damgård, Ivan, Orlandi, Claudio, Zakarias, Sarah: Semi-homomorphic encryption and multiparty computation. In: Paterson, Kenneth G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Proceedings of PKC, pp. 420–443 (2010)

    Google Scholar 

  13. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundred of millions of records. In: Proceedings of IEEE S&P 2013 (2013)

    Google Scholar 

  14. Halevi, Shai, Lindell, Yehuda, Pinkas, Benny: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, Phillip (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing Multi-Party Computation. http://eprint.iacr.org/2011/272

  16. Kamara, S., Mohassel, P., Riva, B.: Salus: A system for server-aided secure function evaluation. In: Proceedings of ACM CCS 2012, pp. 797–808 (2012)

    Google Scholar 

  17. Chow, S.S.M., Lee, J.H., Subramanian, L.: Two-party computation model for privacy-preserving queries over distributed databases. In: Proceedings of NDSS 2009 (2009)

    Google Scholar 

  18. Wang, C., Ren, K., Wang, J., Secure and practical outsourcing of linear programming in cloud computing. In: Proceedings of INFOCOM, pp. 820–828 (2011)

    Google Scholar 

  19. Wang, C., Ren, K., Wang, J., Urs, K.M.R.: Harnessing the cloud for securely solving large-scale systems of linear equations. In: Proceedings of ICDCS (2011)

    Google Scholar 

  20. Blaze, Matt, Bleumer, Gerrit, Strauss, Martin J.: Divertible protocols and atomic proxy cryptography. In: Nyberg, Kaisa (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Wang, B., Li, M., Chow, S.S.M., Li, H.: Computing encrypted cloud data efficiently under multiple keys. In: Proceedings of CNS-SPCC (2013)

    Google Scholar 

  22. Wang, B., Li, M., Chow, S.S.M., Li, H.: A tale of two clouds: computing on data encrypted under multiple keys. In: Proceedings of CNS (2014)

    Google Scholar 

  23. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  24. Thangam V., Chandrasekarn, K.: Elliptic curve based proxy re-encryption. In: Proceedings of ICTCS (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Thangam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Thangam, V., Chandrasekaran, K. (2016). Elliptic Curve Based Secure Outsourced Computation in Multi-party Cloud Environment. In: Mueller, P., Thampi, S., Alam Bhuiyan, M., Ko, R., Doss, R., Alcaraz Calero, J. (eds) Security in Computing and Communications. SSCC 2016. Communications in Computer and Information Science, vol 625. Springer, Singapore. https://doi.org/10.1007/978-981-10-2738-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2738-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2737-6

  • Online ISBN: 978-981-10-2738-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics