Skip to main content

Pedestrian Detection Aided by Deep Learning Attributes Task

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Included in the following conference series:

Abstract

Deep Learning methods have achieved great successes in pedestrian detection owing to their ability of learning discriminative features from pixel level. However, most of the popular methods only consider using the deep structure as a single feature extractor (one attribute) which may confuse positive with hard negative samples. To address this ambiguity, this work jointly learns three different attributes, including parts, deformation and similarity attributes. This paper proposes a new deep network which jointly optimizes the three attributes and formulates them to form a binary classification task. Extensive experiments show that the proposed method outperforms competing methods on the challenging Caltech and ETH benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. IJCV 63(2), 153–161 (2005)

    Article  Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  3. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: ICCV (2009)

    Google Scholar 

  4. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC (2009)

    Google Scholar 

  5. Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. TPAMI 36, 1532–1545 (2014)

    Article  Google Scholar 

  6. Zhang, S., Bauckhage, C., Cremers, A.: Informed haarlike features improve pedestrian detection. In: CVPR, pp. 947–954 (2013)

    Google Scholar 

  7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  8. Ouyang, W., Wang, X.: A discriminative deep model for pedestrian detection with occlusion handling. In: CVPR (2012)

    Google Scholar 

  9. Ouyang, W., Zeng, X., Wang, X.: Modeling mutual visibility relationship in pedestrian detection. In: CVPR (2013)

    Google Scholar 

  10. Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: CVPR (2013)

    Google Scholar 

  11. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: ICCV (2013)

    Google Scholar 

  12. Luo, P., Tian, Y., Wang, X., Tang, X.: Switchable deep network for pedestrian detection. In: CVPR, pp. 899–906 (2014)

    Google Scholar 

  13. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  14. Tian, Y., Luo, P., Wang, W.: Pedestrian detection aided by deep learning semantic tasks (2014). arXiv preprint arXiv:1412.0069

  15. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  16. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. PAMI 34(4), 743–761 (2012)

    Article  Google Scholar 

  19. Ess, A., Leibe, B., Gool, L.V.: Depth and appearance for mobile scene analysis. In: ICCV (2007)

    Google Scholar 

  20. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: CVPR (2008)

    Google Scholar 

  21. Wang, J., Kumar, S., Chang, S.-F.: Semi-supervised hashing for large-scale image retrieval. In: CVPR (2010)

    Google Scholar 

  22. Wang, J., Kumar, S., Chang, S.-F.: Sequential projection learning for hashing with compact codes. In: ICML (2010)

    Google Scholar 

  23. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)

    Google Scholar 

  24. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. IJCV 63(2), 153–161 (2005)

    Article  Google Scholar 

  25. Sermanet, P., Kavukcuoglu, K., Chintala, S., Lecun, Y.: Pedestrian detection with unsupervised and multi-stage feature learning. In: CVPR (2013)

    Google Scholar 

  26. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  27. Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people detection. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 82–91. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Felzenszwalb, P., Grishick, R.B., McAllister, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. PAMI 32, 1627–1645 (2010)

    Article  Google Scholar 

  29. Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian detection. In: CVPR (2010)

    Google Scholar 

  30. Dollar, P., Belongie, S., Perona, P.: The fastest pedestrian detector in the west. In BMVC, 2010

    Google Scholar 

  31. Dollár, P., Appel, R., Kienzle, W.: Crosstalk cascades for frame-rate pedestrian detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 645–659. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Park, D., Ramanan, D., Fowlkes, C.: Multiresolution models for object detection. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 241–254. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants Nos. 61302173, 61461022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Qiu, C., Zhang, Y., Wang, J., He, Z. (2016). Pedestrian Detection Aided by Deep Learning Attributes Task. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics