Skip to main content

Subspace Clustering by Capped \(l_1\) Norm

  • Conference paper
  • First Online:
Book cover Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Included in the following conference series:

Abstract

Subspace clustering, as an important clustering problem, has drawn much attention in recent years. State-of-the-art methods generally try to design an efficient model to regularize the coefficient matrix while ignore the influence of the noise model on subspace clustering. However, the real data are always contaminated by the noise and the corresponding subspace structures are likely to be corrupted. In order to solve this problem, we propose a novel subspace clustering algorithm by employing capped \(l_1\) norm to deal with the noise. Consequently, the noise term with large error can be penalized by the proposed method. So it is more robust to the noise. Furthermore, the grouping effect of our method is theoretically proved, which means highly correlated points can be grouped together. Finally, the experimental results on two real databases show that our method outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, X., Zhang, C., Fu, H., Liu, S., Zhang, H.: Diversity-induced multi-view subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–594 (2015)

    Google Scholar 

  2. Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Vis. 29(3), 159–179 (1998)

    Article  Google Scholar 

  3. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797 (2009)

    Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  5. Gao, H., Nie, F., Li, X., Huang, H.: Multi-view subspace clustering. In: IEEE International Conference on Computer Vision, pp. 4238–4246 (2015)

    Google Scholar 

  6. Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N., et al.: A survey: clustering ensembles techniques. World Acad. Sci. Eng. Technol. 50, 636–645 (2009)

    Google Scholar 

  7. Ho, J., Yang, M.H., Lim, J., Lee, K.C., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. I-11 (2003)

    Google Scholar 

  8. Hong, W., Wright, J., Huang, K., Ma, Y.: Multiscale hybrid linear models for lossy image representation. IEEE Trans. Image Process. 15(12), 3655–3671 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hu, H., Lin, Z., Feng, J., Zhou, J.: Smooth representation clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3834–3841 (2014)

    Google Scholar 

  10. Jiang, W., Liu, J., Qi, H., Dai, Q.: Robust subspace segmentation via nonconvex low rank representation. Information Sciences (2016)

    Google Scholar 

  11. Jiang, W., Nie, F., Huang, H.: Robust dictionary learning with capped l1 norm. In: International Joint Conferences on Artificial Intelligence, pp. 3590–3596 (2015)

    Google Scholar 

  12. Lee, M., Lee, J., Lee, H., Kwak, N.: Membership representation for detecting block-diagonal structure in low-rank or sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1648–1656 (2015)

    Google Scholar 

  13. Li, B., Zhang, Y., Lin, Z., Lu, H.: Subspace clustering by mixture of gaussian regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2094–2102 (2015)

    Google Scholar 

  14. Li, C.G., Vidal, R.: Structured sparse subspace clustering: a unified optimization framework. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 277–286 (2015)

    Google Scholar 

  15. Li, Q., Sun, Z., Lin, Z., He, R., Tan, T.: Transformation invariant subspace clustering. Pattern Recognition (2016)

    Google Scholar 

  16. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  17. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: International Conference on Machine Learning, pp. 663–670 (2010)

    Google Scholar 

  18. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  19. Lu, C., Feng, J., Lin, Z., Yan, S.: Correlation adaptive subspace segmentation by trace lasso. In: IEEE International Conference on Computer Vision, pp. 1345–1352 (2013)

    Google Scholar 

  20. Lu, L., Vidal, R.: Combined central and subspace clustering for computer vision applications. In: International Conference on Machine Learning, pp. 593–600 (2006)

    Google Scholar 

  21. Lu, Y., Lai, Z., Xu, Y., You, J., Li, X., Yuan, C.: Projective robust nonnegative factorization. Inf. Sci. 364, 16–32 (2016)

    Article  Google Scholar 

  22. Pang, Y., Ye, L., Li, X., Pan, J.: Moving object detection in video using saliency map and subspace learning. arXiv preprint arXiv:1509.09089 (2015)

  23. Rao, S.R., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  24. Soltanolkotabi, M., Elhamifar, E., Candes, E.J., et al.: Robust subspace clustering. Annal. Stat. 42(2), 669–699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang, K., Dunson, D.B., Su, Z., Liu, R., Zhang, J., Dong, J.: Subspace segmentation by dense block and sparse representation. Neural Netw. 75, 66–76 (2016)

    Article  Google Scholar 

  26. Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  27. Vidal, R., Favaro, P.: Low rank subspace clustering. Pattern Recogn. Lett. 43, 47–61 (2014)

    Article  Google Scholar 

  28. Xu, Y., Wu, J., Li, X., Zhang, D.: Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans. Image Process. 25(2), 850–863 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yang, S., Yi, Z., He, X., Li, X.: A class of manifold regularized multiplicative update algorithms for image clustering. IEEE Trans. Image Process. 24(12), 5302–5314 (2015)

    Article  MathSciNet  Google Scholar 

  30. Zhang, T., Szlam, A., Lerman, G.: Median k-flats for hybrid linear modeling with many outliers. In: 12th IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 234–241 (2009)

    Google Scholar 

  31. Zhang, T.: Multi-stage convex relaxation for feature selection. Bernoulli 19(5B), 2277–2293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61301230, in part by the International Science and Technology Cooperation Project of Henan Province under Grant 162102410021, in part by the Key Research Program of the Chinese Academy of Sciences under Grant KGZD-EW-T03, in part by the State Key Laboratory of Virtual Reality Technology and Systems under Grant BUAA-VR-16KF-04, and in part by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province under Grant GD201605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Dong .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem 2

Proof

Let

$$\begin{aligned} L(z)=\left\| {x - Xz} \right\| _2^2 + \frac{\lambda }{{{s}}}\left\| z \right\| _2^2{}. \end{aligned}$$
(23)

Since \({z^*} = \arg \mathop {\min }\limits _z L(z)\). We have

$$\begin{aligned} {\left. {\frac{{\partial L(z)}}{{\partial z}}} \right| _{z = {z^*}}=0}{}. \end{aligned}$$
(24)

It gives

$$\begin{aligned} - 2x_i^T(x - X{z^*}) + 2\frac{\lambda }{s}z_i^* = 0,\end{aligned}$$
(25)
$$\begin{aligned} - 2x_j^T(x - X{z^*}) + 2\frac{\lambda }{s}z_j^* = 0. \end{aligned}$$
(26)

Equations (25) and (26) give

$$\begin{aligned} z_i^* - z_j^* = \frac{s}{\lambda }(x_i^T - x_j^T)(x - X{z^*}){}. \end{aligned}$$
(27)

Note that each column of the data X is normalized, we get \({\left\| {x_i^T - x_j^T} \right\| _2} = 2\sqrt{1 - r}\), where \(r = x_i^T{x_j}\). Since \(z^*\) is the optimal solution of the problem (21), we have

$$\begin{aligned} \left\| {x - X{z^*}} \right\| _2^2 + \frac{\lambda }{s}\left\| {{z^*}} \right\| _2^2 = L({z^*}) \le L(0) = \left\| x \right\| _2^2{}. \end{aligned}$$
(28)

Thus \(\left\| {x - X{z^*}} \right\| _2^2 \le \left\| x \right\| _2^2\). Finally, we get

$$\begin{aligned} \frac{{\left| {z_i^* - z_j^*} \right| }}{{{{\left\| x \right\| }_2}}} \le \frac{{{s}}}{\lambda }\sqrt{2(1 - r)}{}. \end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Lu, Q., Li, X., Dong, Y., Tao, D. (2016). Subspace Clustering by Capped \(l_1\) Norm. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics