Skip to main content

Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Abstract

In this paper, we generalize the orthogonal Fourier-Mellin moments (OFMMs) to the fractional orthogonal Fourier-Mellin moments (FOFMMs), which are based on the fractional radial polynomials. We propose a new method to construct FOFMMs by using a continuous parameter \( t \) \( \left( {t > 0} \right) \). The fractional radial polynomials of FOFMMs have the same number of zeros as OFMMs with the same degree. But the zeros of FOFMMs polynomial are more uniformly distributed than which of OFMMs and the first zero is closer to the origin. A recursive method is also given to reduce computation time and improve numerical stability. Experimental results show that the proposed FOFMMs have better performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Flusser, J., Suk, T.: Classification of degraded signals by the method of invariants. Signal Process. 60, 243–249 (1997). http://www.sciencedirect.com/science/journal/01678655

    Article  MATH  Google Scholar 

  2. Bigiin, J., Hans du Buf, J.M.: N-folded symmetries by complex moments in Gabor space and their application to unsupervised texture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 16, 80–87 (1994)

    Article  Google Scholar 

  3. Reeves, P., Prokop, R.J.: Three-dimensional shape analysis using moments and Fourier descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 10, 937–943 (1988)

    Article  Google Scholar 

  4. Gope, C., Kehtarnavaz, N., Hillman, G., Wursig, B.: An affine invariant curve matching method for photo-identification of marine mammals. Pattern Recogn. 38, 125–132 (2005)

    Article  Google Scholar 

  5. Mokhtarian, F., Abbasi, S.: Robust automatic selection of optimal views in multi-view free-form object recognition. Pattern Recogn. 38, 1021–1031 (2005)

    Article  Google Scholar 

  6. Goshtasby, A.: Template matching in rotated images. IEEE Trans. Pattern Anal. Mach. Intell. 7, 338–344 (1985)

    Article  Google Scholar 

  7. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)

    Article  Google Scholar 

  8. Lee, J., Ko, H.: Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments. Pattern Recogn. Lett. 29, 1934–1940 (2008)

    Article  Google Scholar 

  9. Wei, C.H., Li, Y.: Trademark image retrieval using synthetic features for describing global shape and interior structure. Pattern Recogn. 42, 386–394 (2009)

    Article  MATH  Google Scholar 

  10. Fu, X., Li, Y.: Content-based image retrieval using Gabor-Zernike features. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 2, pp. 417–420 (2006)

    Google Scholar 

  11. Flusser, J., Suk, T., Zitova, B.: Moments and Moment Invariants in Pattern Recognition, pp. 165–209. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  12. Dai, X.B., Shu, H.Z., et al.: Reconstruction of tomographic images from limited range projections using discrete radon transform and Tchebichef moments. Pattern Recogn. 43, 1152–1164 (2010)

    Article  MATH  Google Scholar 

  13. Xin, Y.Q., Liao, S.: Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recogn. 40, 3740–3752 (2007)

    Article  MATH  Google Scholar 

  14. Zhang, H., Shu, H.Z.: Affine Legendre moment invariants for image watermarking robust to geometric distortion. IEEE Trans. Image Process. 20, 2189–2199 (2011)

    Article  MathSciNet  Google Scholar 

  15. Shao, Z.H., Shu, H.Z.: Quaternion Bessel-Fourier moments and their invariant descriptors for object reconstruction and recognition. Pattern Recogn. 47, 603–611 (2014)

    Article  MATH  Google Scholar 

  16. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)

    MATH  Google Scholar 

  17. Teh, C.H., Chin, R.T.: On image analysis by the method of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10, 496–513 (1988)

    Article  MATH  Google Scholar 

  18. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. A: Opt. Image Sci. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  19. Mostafa, Y.A., Psaltis, D.: Recognitive aspects of moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 6, 689–706 (1984)

    Google Scholar 

  20. Papakostas, G.A., et al.: Fast numerically stable computation of orthogonal Fourier-Mellin moments. IET Comput. Vis. 1, 11–16 (2007)

    Article  MathSciNet  Google Scholar 

  21. Shu, H.Z., et al.: A new fast method for computing Legendre moments. Pattern Recogn. 33, 341–348 (2000)

    Article  Google Scholar 

  22. Pawlak, M.: Image analysis by moments: reconstruction and computational aspects. Oficyna Wydawnicza Politechniki Wroclawskiej (2006)

    Google Scholar 

  23. Terrillon, J.C., et al.: Invariant neural-network based face detection with orthogonal Fourier–Mellin moments. In: The 15th IEEE International Conference on Pattern Recognition, vol. 2, pp. 993–1000 (2000)

    Google Scholar 

  24. Wang, X., et al.: Scaling and rotation invariant analysis approach to object recognition based on Radon and Fourier-Mellin transforms. Pattern Recogn. 40(12), 3503–3508 (2007)

    Article  MATH  Google Scholar 

  25. Andrew, T.B.J., David, N.C.L.: Integrated wavelet and Fourier-Mellin invariant feature in fingerprint verification system. In: ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 82–88 (2003)

    Google Scholar 

  26. Sheng, Y., Arsenault, H.H.: Experiments on pattern recognition using invariant Fourier-Mellin descriptors. J. Opt. Soc. Am. A: Opt. Image Sci. 3(6), 771–776 (1986)

    Article  Google Scholar 

  27. Sheng, Y., Shen, L.: Orthogonal Fourier-Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. A: Opt. Image Sci. 11, 1748–1757 (1994)

    Article  Google Scholar 

  28. Papakostas, G.A., et al.: Fast computation of orthogonal Fourier–Mellin moments using modified direct method. In: Proceedings of 6th EURASIP Conference Focused on Speech and Image Processing, Multimedia Communications and the 14th International Workshop of Systems, Signals and Image Processing, pp. 153–156 (2007)

    Google Scholar 

  29. Bailey, R.R., Srinath, M.: Orthogonal moment features for use with parametric and nonparametric classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 18, 389–399 (1996)

    Article  Google Scholar 

  30. Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990)

    Article  Google Scholar 

  31. Papakostas, G.A., Boutalis, Y.S., Karras, D.A., Mertzios, B.G.: Efficient computation of Zernike and Pseudo-Zernike moments for pattern classification applications. Pattern Recogn. Image Anal. 20, 56–64 (2010)

    Article  MATH  Google Scholar 

  32. Kan, C., Srinath, M.D.: Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recogn. 35, 143–154 (2002)

    Article  MATH  Google Scholar 

  33. Bin, T.J., et al.: Subpixel edge location based on orthogonal Fourier-Mellin moments. Image Vis. Comput. 26, 563–569 (2008)

    Article  Google Scholar 

  34. Zhang, H., Shu, H.Z., et al.: Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications. Image Vis. Comput. 28(1), 38–44 (2010)

    Article  Google Scholar 

  35. Hosny, K.M., et al.: Fast computation of orthogonal Fourier-Mellin moments in polar coordinates. J. Real-Time Image Proc. 6(2), 73–80 (2011)

    Article  Google Scholar 

  36. Walia, E., Singh, C., Goyal, A.: On the fast computation of orthogonal Fourier-Mellin moments with improved numerical stability. J. Real-Time Image Proc. 7(4), 247–256 (2012)

    Article  Google Scholar 

  37. Singh, C., Upneja, R.: Accurate computation of orthogonal Fourier-Mellin moments. J. Math. Imaging Vis. 44, 411–431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, X.Y., Liao, S.: Image reconstruction from orthogonal Fourier-Mellin moments. Image Anal. Recogn. 7950, 687–694 (2013)

    Article  Google Scholar 

  39. Götze, N., Drüe, S., Hartmann, G.: Invariant object recognition with discriminant features based on local Fast-Fourier Mellin transform. Int. Conf. Pattern Recogn. 1, 948–951 (2000)

    Article  Google Scholar 

  40. Derrode, S., Ghorbel, F.: Shape analysis and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation. Sig. Process. 84, 25–39 (2004)

    Article  MATH  Google Scholar 

  41. Guo, L.Q., Zhu, M.: Quaternion Fourier-Mellin moments for color images. Pattern Recogn. 44, 187–195 (2011)

    Article  MATH  Google Scholar 

  42. Mendlovic, D., Ozaktas, H.M.: Fractional Fourier transforms and their optical implementation: I. J. Optical Soc. Am. A: Optics, Image Sci. 10(9), 1875–1881 (1993)

    Article  Google Scholar 

  43. Hu, H.T., et al.: Orthogonal moments based on exponent functions: exponent-Fourier moments. Pattern Recogn. 47(8), 2596–2606 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is partly supported by National Natural Science Foundation of China (Grant no. 61379106), the Shandong Provincial Natural Science Foundation (Grant nos. ZR2013FM036, ZR2015FM011), the Open Project Program of the State Key Lab of CAD&CG (Grant no. A1315), Zhejiang University, the Fundamental Research Funds for the Central Universities (Grant nos. 14CX02032A, 14CX02031A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zhang, H., Li, Z., Liu, Y. (2016). Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_62

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics