Skip to main content

Simultaneous Audio Source Localization and Microphone Placement

  • Conference paper
  • First Online:
  • 2242 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 663))

Abstract

Position information of sound source provides important cues for many audio analysis tasks. In this paper, we present a simple yet effective simultaneous audio source location and microphone placement approach to obtain the position information of stationary sound source. Motivation by the fact that audio source location and microphone placement can help each other, we consider these tasks as a joint inference framework so that more contextual information can be exploited. By fusing geometric properties of the sliding microphone-pair system with an error theory analysis, our location approach can achieve higher accuracy than conventional methods theoretically. Moreover, experimental results on our built real sound source location system are presented to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brandstein, M., Ward, D.: Microphone Arrays: Signal Processing Techniques and Applications. Springer, Heidelberg (2013)

    Google Scholar 

  2. Yang, K., Wang, G., Luo, Z.Q.: Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Trans. Signal Process. 57(7), 2775–2784 (2009)

    Article  MathSciNet  Google Scholar 

  3. Foy, W.H.: Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976)

    Article  Google Scholar 

  4. Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. aes–20(2), 183–198 (1984)

    Article  Google Scholar 

  5. Schau, H., Robinson, A.: Passive source location employing spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. 35, 1223–1225 (1987)

    Article  Google Scholar 

  6. Friedlander, B.: A passive localization algorithm and its accuracy analysis. IEEE J. Oceanic Eng. 12(1), 234–245 (1987)

    Article  Google Scholar 

  7. Fang, B.T.: Simple solutions for hyperbolic and related position fixes. IEEE Trans. Aerosp. Electron. Syst. 26(5), 748–753 (1990)

    Article  Google Scholar 

  8. Abel, J.S.: A divide and conquer approach to least-squares estimation. IEEE Trans. Aerosp. Electron. Syst. 26(2), 423–427 (1990)

    Article  Google Scholar 

  9. Yang, L., Ho, K.C.: An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions. IEEE Trans. Signal Process. 57(12), 4598–4615 (2009)

    Article  MathSciNet  Google Scholar 

  10. Johnson, D.H., Dudgeon, D.E., Processing, A.S.: Concepts and Techniques. Simon & Schuster, New York (1992)

    Google Scholar 

  11. Gazor, S., Grenier, Y.: Criteria for positioning of sensors for a microphone array. IEEE Trans. Speech Audio Process. 3(4), 294–303 (1995)

    Article  Google Scholar 

  12. Yang, B., Scheuing, J.: Cramer-rao bound and optimum sensor array for source localization from time differences of arrival. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. iv/961–iv/964 (2005)

    Google Scholar 

  13. Zhang, C., Zhang, Z., Florêncio, D.: Maximum likelihood sound source localization for multiple directional microphones. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 1, p. I-125. IEEE (2007)

    Google Scholar 

  14. Ho, K.C.: Bias reduction for an explicit solution of source localization using TDOA. IEEE Trans. Signal Process. 60(60), 2101–2114 (2012)

    Article  MathSciNet  Google Scholar 

  15. Smith, J.O., Abel, J.S.: Close-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. 35(12), 1661–1669 (1988)

    Article  Google Scholar 

  16. Abel, J.S., Smith, J.: The spherical interpolation method for closed-form passive source localization using range difference measurements. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 471–474 (1987)

    Google Scholar 

  17. Chan, Y.T., Ho, K.C.: Simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  MathSciNet  Google Scholar 

  18. Huang, Y., Benesty, J., Elko, G.W., Mersereati, R.M.: Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Trans. Speech Audio Process. 9(8), 943–956 (2001)

    Article  Google Scholar 

  19. Ho, K.C.: Bias reduction for an explicit solution of source localization using TDOA. IEEE Trans. Signal Process. 60(5), 2101–2114 (2012)

    Article  MathSciNet  Google Scholar 

  20. Mendel, J.M.: Lessons in Digital Estimation Theory. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  21. Rabinkin, D.V., Renomeron, R.J., French, J.C., Flanagan, J.L.: Optimum microphone placement for array sound capture. J. Acoust. Soc. Am. 101(5), 227–239 (1997)

    Article  Google Scholar 

  22. Knapp, C., Clifford Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key Research and Development Program of China under Grant 2016YFB1001001, the National Natural Science Foundation of China under Grants 61225008, 61572271, 61527808, 61373074 and 61373090, the National 1000 Young Talents Plan Program, the National Basic Research Program of China under Grant 2014CB349304, the Ministry of Education of China under Grant 20120002110033, and the Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Luo, P., Lu, J., Zhou, J. (2016). Simultaneous Audio Source Localization and Microphone Placement. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 663. Springer, Singapore. https://doi.org/10.1007/978-981-10-3005-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3005-5_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3004-8

  • Online ISBN: 978-981-10-3005-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics