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audio restoration

Jun Deng' - Bjorn Schuller’ - Florian Eyben' - Dagmar Schuller’ - Zixing Zhang' « Holly Francois” -
Eunmi Oh®

Abstract

Perceptual audio coding is heavily and successfully applied for audio compression. However, perceptual audio coders may
inject audible coding artifacts when encoding audio at low bitrates. Low-bitrate audio restoration is a challenging problem,
which tries to recover a high-quality audio sample close to the uncompressed original from a low-quality encoded version.
In this paper, we propose a novel data-driven method for audio restoration, where temporal and spectral dynamics are
explicitly captured by a deep time-frequency-LSTM recurrent neural networks. Leveraging the captured temporal and
spectral information can facilitate the task of learning a nonlinear mapping from the magnitude spectrogram of low-quality
audio to that of high-quality audio. The proposed method substantially attenuates audible artifacts caused by codecs and is
conceptually straightforward. Extensive experiments were carried out and the experimental results show that for low-
bitrate audio at 96 kbps (mono), 64 kbps (mono), and 96 kbps (stereo), the proposed method can efficiently generate
improved-quality audio that is competitive or even superior in perceptual quality to the audio produced by other state-of-
the-art deep neural network methods and the LAME-MP3 codec.

1 Introduction

Since MPEG-1 Layer-3 (MP3) was standardized in 1991,
perceptual audio coding has quickly emerged as the most
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dramatic and important development in digital audio cod-
ing over the last decades, thanks in part to the proliferation
and growing demands of digital music services, such as
online music streaming services (i. e., Spotify, Pandora,
and Apple Music), mobile devices (i. e., smart-phones and
tablets), and online audio storage [31, 43]. Today perhaps
all popular audio codecs, such as MP3, MPEG-2/4
advanced audio coding (AAC) and Dolby Adaptive
Transform Coder 3 (AC-3), are rooted in perceptual audio
coding. A powerful feature of perceptual audio coding is its
capability to effectively reduce storage space or bandwidth
required for transmission for audio data while retaining
near-transparent CD-quality [5, 43, 56]. This is achieved
by exploiting perceptual irrelevancies and audio data
statistic redundancies [43].

However, perceptual audio coders may inject audible
coding artifacts when encoding audio at low bitrates. This
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is commonly due to the fact that the amount of bits
required to keep the amplitude of quantization noise below
the masked threshold is insufficient, leading to audible
noise, so-called spectral holes, or due to signal bandwidth
reduction [5, 56]. Audio restoration and audio enhance-
ment methods can be used to alleviate this problem and
thus improve the perceptual quality. The most well-known
audio restoration method is Spectral Band Replication
(SBR) [11, 12] that is devised to improve the perceptual
quality of highly compressed audio signals by restoring the
high-frequency information which was lost [24, 61]. Such
high-frequency spectrum extension technology has played
a key role in improving coding efficiency while keeping the
bitrate requirements low. SBR has advanced MPEG-4
AAC to form MPEG-4 High Efficiency Advanced Audio
Coding (HE-AAC) [31, 60]. As a result, HE-AAC can
obtain near-transparent CD-quality at a very low bitrate.
The existing SBR approaches exploit the fact that there is
harmonic redundancy in the frequency domain. That is, the
higher frequencies can be replicated by the lower fre-
quencies with proper guidance information provided.

Despite the widespread use and remarkable success of
SBR methods in audio coding, SBR methods are faced with
some unresolved issues, which likely degrade the quality of
audio signals [31, 38, 39, 62]. It is observed that SBR may
introduce audible artifacts like tonal spikes to the high
frequency of the signals [31]. Another underlying issue is
the mismatch between the harmonic structures caused by
the process of the band replication to create the missing
high-frequency content [61]. Moreover, the side informa-
tion used for the high-frequency spectral content recon-
struction needs to be transmitted, yielding the increase in
the data storage space or transmission bandwidth.

Due to the rise of machine learning, there has been a
new trend toward developing data-driven techniques for
speech enhancement[34], active noise reduction [37],
hydrological process modeling [1], noise exposure level
prediction [2], as well as audio restora-
tion [22, 28, 32, 47, 48, 61]. The idea is to enhance the
quality of audio signals by learning to predict the missing
values from a large amount of data. One apparent advan-
tage over SBR is that it eliminates the need of any side
information required for the process of the band replica-
tion. For example, one approach is to employ a Gaussian
mixture model (GMM) to estimate the energy of high-
frequency spectral envelop from wideband to super-wide-
band in the context of mobile wideband audio communi-
cation systems [32]. Similarly, GMM is also used to extend
the bandwidth of telephone speech to the frequency range
0-300 Hz [47, 48]. In addition to the use of GMM, unsu-
pervised learning k-means and supervised learning Support
Vector Regression (SVR) are combined to build high-fre-
quency envelop predictors for signals with similar

characteristics [61]. More recently, a spectral mapping
approach based on deep feed-forward networks [28] is
proposed to directly estimate the missing high-frequency
spectrum from narrow-band speech. Instead of spectral
mapping, a novel deep residual convolutional network is
present to enhance the quality by directly mapping audio
inputs at low sampling rates into higher-quality signals
with an increased resolution in the time domain [22].
Despite the aforementioned learning-based methods gen-
erally work well for speech signals, they may not be
directly applicable to music [61]. This is simply because
music has a more complicated excitation signal and spec-
tral shape when compared to speech [22, 61].

In this paper, we propose a novel deep learning-based
audio restoration method for music signals encoded at a
low bitrate, which is called Time-Frequency Long Short-
Term Memory Recurrent Neural Networks (TF-LSTM-
RNNG5). The proposed method fundamentally extends the
basic autoencoder structure [7, 8, 10, 18], which directly
learns a nonlinear spectral mapping from compressed audio
spectrum to uncompressed audio spectrum, allowing to
reconstruct high-quality audio from a low-quality version.

Our approach is motivated by the evident observation
that in audio signals, a certain harmonic correlation or
similarity of the spectrum can be found both in frequency
and in time. Hence, for frequency content (i. e., spectral
holes) removed by the lossy compression process, it is
plausible to estimate the missing frequency content from
the remaining (correlated) spectral information and adja-
cent frames. To leverage this observation, our proposed
TF-LSTM-RNNSs exploit harmonic correlations of time-
frequency representations in both time and frequency
directions, adaptively capturing the two-dimensional time-
frequency input information to facilitate restoring the
original audio from the compressed audio. The objective
and subjective evaluations suggest that the proposed
method can improve the subjective quality of music signals
at low bitrates (e. g., 64 kbps) and achieve better perfor-
mance than other representative deep neural network-based
audio restoration methods.

Our contributions are summarized as follows:

1. Encouraged by the constant success of the data-driven
methods for automatic speech recognition and speech
enhancement, in this paper, we focus on making use of
deep learning methods for music audio restoration at
low bit rate. Accordingly, we systematically conduct
investigations into a variant of state-of-the-art deep
neural networks, such as VGG networks, U-CNN
networks and WaveNets, for this audio restoration task.

2. In addition, we propose novel deep TF-LSTM-RNNs

to remove the audible artifacts introduced by the lossy
audio compression process in the hope of enhancing



the perceptual quality. To the best of our knowledge,
this is the first work on deep learning, which has been
successfully tested for music audio restoration.

3. The extensive experimental results demonstrate that
the existing deep neural networks, such as WaveNets,
which have been successfully applied for speech
enhancement, have the limited capability of addressing
the audio restoration task, especially for the low-bitrate
codec music signal. However, our proposed TF-LSTM-
RNNs method is capable of the challenging music
audio restoration problem even when the bitrate of the
codec music signal is below 64 kbps.

The remainder of this paper is organized as follows: Sect. 2
first discusses related work. We then describe the proposed
deep TF-LSTM-RNN for low-bitrate audio restoration in
Sect. 3. In Sect. 4, a number of deep neural network
architectures for comparison, the music data sets, objective
and subjective metrics are discussed. Finally, we draw a
conclusion and point out directions for future work in
Sect. 5.

2 Related work

2.1 Spectro-temporal Modeling using RNNs
for audio processing

In the context of machine learning, there are a number of
approaches available to extract patterns from a two-di-
mensional matrices such as spectro-temporal representa-
tions of audio. The typical approach is Convolutional
Neural Networks (CNNs). Thanks to their capability of
extracting representative features, CNNs have been widely
and successfully applied in image -classification [58].
Owing to these successes, CNNs have been increasingly
employed for acoustic analysis as well, such as speech
recognition [3], speaker analysis [36], music information
retrieval [25], and denoising [44]. The most traditional
way to implement CNNs is taking a sliding square window
to segment a time-continuous spectrogram into sequential
image series. Each segmented spectrogram is then con-
sidered as an independent image where a conventional
image processing algorithm with CNNs could be used.
Most of these applications, however, lack a specific
consideration with respect to audio. For image processing,
translation invariance is one of the major concerns. To
address this issue, local filter and pooling strategies are
normally used with CNNs. In contrast, for a audio spec-
trogram, the translational invariance problem is largely
reduced, since bins in the spectrograms have fixed posi-
tions associated with fixed functions/frequencies. Addi-
tionally, an audio spectrogram has intrinsic correlations
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which differ from, e.g., photographic images. Thus, the
frequency information indeed has common patterns, which,
however, have not yet been explored intensively in the past
for CNNs.

To address this problem, Li et al. [26] firstly proposed
to use Long Short-Term Memory (LSTM) RNNs to learn
the frequency content information for improved speech
recognition. The authors segmented the frequency bins at
time step ¢ into a series of subsets by applying an over-
lapped sliding window. The segmented frequency bins are
then successively fed into the LSTM which is called
F-LSTM, and all the outputs are concatenated as a new
unified vector at time #. This unified vector is then fed into
a cascaded LSTM which is called T-LSTM and operates as
a traditional sequence processing LSTM. Therefore, the
F-LSTM and T-LSTM recurrency and cell states model
frequency context as well as the time context, respectively.

Rather than separately capturing the frequency and time
context in a cascaded structure, several studies try to seek
help from a more general RNN architecture specifically
designed for multi-dimensional sequence processing, i. e.,
multi-dimensional RNNs (MDRNNS5) [13]. The underlying
idea of MDRNNS is to replace the single recurrent con-
nection found in standard RNNs with as many recurrent
connections as there are dimensions in the data [13] and
have efficiently applied to, for example, image segmenta-
tion [57]. In speech processing, Liet al. [27] further
modified the cascaded structure by concepts from
MDRNN:S, resulting in Time-Frequency domain LSTM,
where a current output depends on the cell states of the
previous time step, and the outputs from both previous time
and frequency steps and the input of the current time and
frequency step. In doing this, the Time-Frequency domain
LSTM at each frequency step k and time step ¢ has
knowledge about the frequency information ranging from
bin O to bin k — 1, and the time information ranging frame
0 from frame ¢, if it operates in a forward way. Due to its
effectiveness, Time-Frequency domain LSTM was suc-
cessfully applied to voice conversion [30] and pitch
tracking [33].

Different from the aforementioned time-frequency net-
works, where the time-network and frequency-network are
highly intervened when going through the spectrogram, our
proposed audio enhancement network applies a separated
scanning strategy. That is, the time-network and frequency-
network are separately fed with time series data and fre-
quency series data. This greatly facilitates the learning
process.

Moreover, the proposed network structure is specifically
inspired by bidirectional RNN (BRNN) [53]. Both struc-
tures include two sub-layers per layer. However, for BRNN
the sub-layers, normally namely forward layer and back-
ward layer, are used to scan the sequences in an opposite
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direction; for the proposed network the sub-layers, referred
to as time layer and frequency layer, are designed to extract
patterns from different domains, namely spectral and
temporal domains. Hence, the sub-layers of the proposed
networks can be further extended into bidirectional sub-
layers. Therefore, different from BRNN which is inherently
one dimensional, the proposed network is able to learn
patterns from two-dimensional representations.

2.2 Audio restoration

Audio restoration has been often studied in the audio-
processing field under the name bandwidth exten-
sion [11, 24, 60]. One commercial technique is spectral
band replication [11], which has been integrated into HE-
AAC [31, 60]. Besides, there is a variation of data-driven
methods for bandwidth extension, including
GMM [32, 47, 48], deep feed-word neural networks [28],
k-means and SVR [61], and deep CNNs [22]. These
bandwidth extension methods usually attempt to recover
the high-frequency content (e. g., 4-8 kHz) from narrow-
band audio (4 kHz in bandwidth) with or without the need
of side information. Rather than only generating the high-
frequency content, the proposed method in this paper aims
to recover all the missing information in the frequency
range from O up to 15 kHz, lost in the perceptual coding
process. Moreover, our method is conceptually straight-
forward and is also the first work on deep learning, which
has been successfully applied for music audio restoration.

3 Proposed method
3.1 Basic LSTM-RNNs

The LSTM-RNN model uses one or multiple LSTM
blocks [19]. Every memory block consists of self-con-
nected linear memory cells ¢ and three multiplicative gate
units: an input gate i, a forget gate f, and an output gate o.
Given an input X, at the time step ¢, the activations of the
input gate i,, the forget gate f;, the output gate o,, the
candidate state value g,, the memory cell state ¢, are sep-
arately computed by the following equations:

i, = sigm(Wyx, + Wyh +b;), (1)
f, = sigm(Wpx, + Wyh,_y + by), (2)
o, = sigm(W,,x, + W,h, 1 +b,), (3)
g, = tanh(Wy.x, + Wy h,_; +b,), (4)
c¢=f0¢ 1 +i0g, (5)
h, = o, ® tanh(c,), (6)

where W is a weight matrix of the mutual connections; h,
represents the output of the hidden block; b indicates the
block bias, © indicates the element-wise multiplication
operation.

The LSTM memory cell can store and access informa-
tion over a long temporal range and thus efficiently avoid
the vanishing gradient problem [19]. To further increase
the LSTM-RNN’s capability to access future context,
LSTM-RNN can be extended to a bidirectional ver-
sion [53]. That is, the network calculates its forward hid-
den layer activations hf from the beginning to the end of a
sequence, and its backward hidden layer activations hf
from the end to the beginning of a sequence, then updates
the output layer by

Y. = vah]; + Vbehi7 + by, (7)

where Wp,, W, stand for the forward and backward weight
matrices, and b, denotes the hidden bias vector. The for-
ward and backward directed layers are connected to the
same output layer, which therefore can access the whole
context information.

3.2 Time-frequency-LSTM-RNNs for audio
restoration

Time-Frequency-LSTM-RNNs  (TF-LSTM-RNNs) are
devised to perform recurrence in both time and frequency
direction. Figure 1 illustrates an example of TF-LSTM-
RNNs with two hidden RNN layers and one linear hidden
layer. The two-dimensional time-frequency modeling is
made possible by processing the time-frequency represen-
tations in both directions with two separate LSTM-RNN
layers: Time-LSTM (T-LSTM) layer processes the data
sequence along time for modeling temporal dynamics; the
other one, which is called a Frequency-LSTM (F-LSTM)
layer, processes the data sequence in frequency for cap-
turing spectral dynamics. The output activations from both
T-LSTM and F-LSTM layers are then fed to the same
output layer, where they are merged. Moreover, outputs
from T-LSTM are not fed to inputs of F-LSTM, and vice
versa. It is to note, that without the recurrent connections in
frequency, this architecture corresponds to a regular
LSTM-RNN, which has been often used in various audio
processing applications [9, 51]. If the recurrent connections
in the time dimension are excluded, this leads to a regular
LSTM-RNN in the frequency dimension. When both time
and frequency dimensions are simultaneously taken into
account in the same network, correlations in the temporal
and spectral directions can directly and efficiently be used
to minimize the objective function.

Based on the proposed network, we present a new data-
driven method for audio restoration, where we learn a
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Fig. 1 A diagram of the unfolded time-frequency-LSTM (TF-LSTM)
network proposed in this paper for audio restoration. It consists of two
separate LSTM sub-networks: the Time LSTM (T-LSTM) that is
responsible for the time direction and the Frequency-LSTM (F-
LSTM) that is responsible for the frequency direction. Here, the
T-LSTM is unfolded in time while the F-LSTM is unfolded in
frequency. Inputs of F-LSTM do not come from outputs from
T-LSTM, and vice versa

nonlinear mapping from low-quality magnitude to its
original high-quality magnitude by exploiting temporal and
spectral dynamics. The overall design of the proposed
system using TF-LSTM is shown in Fig. 2, which consists
of feature extraction, model learning, and audio waveform
reconstruction.

The feature extraction module transforms a raw wave-
form signal into time-frequency representations by win-
dowing with the Hann window (raised cosine) and
performing STFT, yielding the magnitude of the Fourier
coefficients and the phase information. In addition, we
apply the power and log operations to the resulting
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Fig. 2 The overall design of the proposed system using TF-LSTM for
audio restoration

magnitudes, ending up the log-spectral power magnitudes,
which are then used as the input to TF-LSTM.

Next, given a pair of the log-spectral power magnitudes
of a compressed music audio signal and the one of its
corresponding uncompressed audio, the model training of
TF-LSTM is to learn a mapping with the purpose of
reconstructing the uncompressed magnitude from its
compressed counterpart. Here, compressed audio is
obtained from an MP3 codec.

Finally, given the magnitudes of a compressed music
audio signal unseen in the training phase, the outputs of
TF-LSTM are treated as an estimation of the restored
magnitudes. Afterward, the inverse step of the log and
power operations is performed on these restored magni-
tudes. The inverse Short-Time Fourier Transform (ISTFT)
is computed from the combination of the restored magni-
tudes and the original phase information of the compressed
audio. In addition, overlap-add with the same Hann win-
dow as applied during feature extraction is implemented to
reconstruct the audio signal [16].

3.3 Loss function

Given a set of high-quality magnitudes {X,} and their
corresponding low-quality magnitudes {Y,}, the objective
of the TF-LSTM-RNN method shown in Fig. 1 is to learn
the nonlinear mapping function f from low-quality data
{Y,} to high-quality data {X,}. To this end, learning the
nonlinear mapping function fis equivalent to the estimation
of all the parameters 0 of the TF-LSTM-RNN. In this work,
this is achieved by minimizing the reconstruction error
between the reconstructed magnitudes f(Y;0) and the
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corresponding ground truth high-quality magnitudes X.
That is, we use mean squared error (MSE) as the loss
function:

N
7(0) = 5 > (0 ) = X, ®)

where N is the number of given training samples. The loss
is minimized using stochastic gradient descent with the
standard Back-Propagation Through Time (BPTT)
algorithm [59].

4 Experiments

4.1 Comparison to state-of-the-art deep neural
networks

We compare the following eight types of deep neural
networks to evaluate our proposed TF-LSTM network in
the context of the current state of the art. In the following,
our proposed method is referred to as TF-LSTM. Note that
for the fair comparison, we conducted generally hyper-
parameters search for each type of deep neural networks,
including the number of hidden units, the number of layers,
the number of conventional maps. The learning rate and
mini-batch have negligible effects of the performance due
to the large training data. Tables 1 and 2 summarize the
input audio representations and key hyper-parameters for
all the deep neural networks used in the experiments.

Table 1 Audio representations were used for the different deep neural
networks in the experiments

Net type Audio representations

RNNs
T-LSTM Log-spectral magnitudes (0-15 kHz)
T-BLSTM Log-spectral magnitudes (0-15 kHz)
F-LSTM Log-spectral magnitudes (0-15 kHz)
TF-LSTM Log-spectral magnitudes (0-15 kHz)

CNNs
VGG-like CNN Log-spectral magnitudes (0-15 kHz)
U-CNN Waveform samples
WaveNet Waveform samples

RNNs + CNNs

LSTM + VGG-like CNN
VGG-like CNN + LSTM

Log-spectral magnitudes (0-15 kHz)
Log-spectral magnitudes (0-15 kHz)

4.1.1 Recurrent neural networks

Since TF-LSTM is derived from LSTM-RNNSs, the com-
parison naturally starts with three representative LSTM-
RNNE.

(1) Time-LSTM 1t uses a classic LSTM-RNN in place of
the TF-LSTM-RNN model in Fig. 2, which only models
temporal dynamics. This method is termed T-LSTM.

(2) Time-BLSTM Likewise, this comparison method
uses BLSTM [14] to exploit temporal dynamics from the
past and future context, termed T-BLSTM.

(3) Frequency-LSTM Frequency-LSTM learns only
spectral dynamics via the recurrent connections, which is
termed F-LSTM.

4.1.2 Convolutional neural networks

In addition to LSTM-RNNSs, we evaluate three state-of-the-
art CNN architectures for the first time for the task of
compressed audio restoration. These CNNs have either
produced state-of-the-art results on automatic speech
recognition (ASR) or audio generation tasks [42, 52, 54] or
audio super-resolution [22], which is related to compressed
audio restoration but still quite different.

(4) VGG-like CNN The deep CNN used for comparison
here is deeply rooted in the work of the VGG convolutional
net, which was originally proposed for image classification
in the ImageNet 2014 competition [55]. Recently, the
VGG-inspired networks have been successfully adapted to
ASR [52, 54], large-scale audio classification [17], speech
anger detection [9]. The fundamental idea of the VGG net
is to use small 3 x 3 convolutional kernels with Rectified
Linear Unit (ReLU) [40] nonlinear functions without
pooling between these layers. We apply this principle to
constructing a VGG-inspired CNN network with 4 hidden
convolutional layers and 1 fully connected layer for music
restoration. Note that each convolution layer has 32 maps.

(5) U-CNN In [22], the authors trained a U-net like
neural network introduced in [50] for enhancing the quality
of audio signals such as speech or music by transforming
inputs of a low sampling rate into signals with a higher
sampling rate (up-sampling).

We strictly followed the work described in [22] to
replicate the implementation of the U-net-like CNN for the
music audio restoration. The replicated network takes
16 384 compressed samples to predict the corresponding
16 384 uncompressed samples. The network basically
consists of a stack of down-sample blocks (D block) and
up-sampling blocks (U Block). The down-sampling blocks
perform a convolution, batch normalization [20], and apply
a ReLU nonlinearity. We used a stride of two to reduce the
dimensionality of the input. The up-sampling blocks apply
a nearest neighbor up-sampling with a factor of 2 [41], a
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Table 2 The hyper-parameters

used for the experiments Net type # RNN layers # Hid. units # CNN maps (filters) # CNN-layers
RNNs
T-LSTM 2 256 - -
T-BLSTM 2 256 - -
F-LSTM 2 256 - -
TF-LSTM 2 256 - -
CNNss
VGG-like CNN - - 32 4
U-CNN - - 32 6
WaveNet - - 32 and 256* 21
RNNs 4 CNNs
LSTM + VGG-like CNN 256 32 3
VGG-like CNN + LSTM 256 32 3

*Two types of convolutional layers in the WaveNet have different numbers of convolutional maps. The
number of residual convolutional maps are set to be 32 and the number of skip convolutional maps are set

to be 256

convolution, batch normalization, and apply a ReLU non-
linearity. As shown in [22], skip connections from the
down-sampling blocks to the up-sampling blocks are
added. An additive residual connection between the input
layer and the output layer is considered. Each convolution
in down-sampling blocks uses a kernel size of 30 and the
number of padding of 14, while each convolution in up-
sampling blocks uses a kernel size of 31 and the number of
padding of 15. Note that, in practice, we found that batch
normalization does not help the net in terms of SNR, we
normally disable it to save GPU memory. Similar to TF-
LSTM, the MSE function is chosen as the objective of the
network. In the following, this method is referred to as
U-CNN.

(6) WaveNet The motivation for WaveNet is that
WaveNet is powerful enough to generate realistic-sounding
human-like speech and music audio [4, 42]. WaveNet’s
ability to generate raw waveforms suggests that it can
model any kind of audio. In this work, we adopt WaveNet
to the music restoration problem.

In [42], WaveNet uses a discrete softmax output to
avoid making any assumption on the shape of the output’s
distribution. However, the preliminary experiments with
discrete softmax outputs proved disadvantageous for music
restoration. We found that 8-bit p-law quantization used in
WaveNet introduced noise to the enhanced music audio
and disproportionately amplified the noise. For these rea-
sons, we proposed to formulate the music restoration task
as a real-valued regression problem by using the funda-
mental WaveNet architecture.

The fundamental WaveNet architecture consists of a
stack of dilated causal convolutional layers. As suggested
in [42], the dilation is doubled for every layer up to a limit
and then repeated: in our implementation, the dilation

levels are 1,2,4,...,512,1,2,4,...,512. In addition, we
set up the number of skip maps to be 256 and the number
residual maps to be 32.

It is worth noting that when compared to with our pro-
posed TF-LSTM method, one major disadvantage of the
WaveNet architecture is that the WaveNet is particularly
hungry of computational resources for the inference phase.
For example, in [4], the authors reported that the Floating
Point Operations (FLOPs) of the WaveNet with 40 layers is
approximately 55 x 10° for every second of the forward
phase. In contrast, the FLOPs of the TF-LSTM with 2
layers that is used in our experiments (see Table 2) is
0.49 x 10° for every second of the forward phase.

4.1.3 Combinations of RNNs and CNNs

The remaining two deep networks used for comparison are
the combinations of LSTM-RNNs and CNNS, which have
attracted increasing attention in the audio processing
community [9].

(7) LSTM + VGG—1likeCNN The architecture of the first
combination uses multiple LSTM-RNNs on the input
magnitude, then feeds the LSTM’s output to the stacked
VGG-like CNNs.

(8) VGG — likeCNN + LSTM Likewise, the second
combination is a convolutional feature extractor applied to
the input magnitude, then multiple recurrent layers on top
of the CNN’s output.

4.2 Selected music data
For the experiments, we collected 1138 pop music tracks

directly from music CDs. The CD-quality audio was then
stored in stereo, 16-bit, 44.1 kHz sampling rate, PCM
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WAV files. Further, for simplicity, we selected three dif-
ferent excerpts of 30 s from each track, resulting in an
uncompressed audio dataset consisting of 3414 excerpts.

Next, the corresponding compressed audio data were
created in the following way: first we encoded all excerpts
with an MP3 codec; then we decoded all of the resulting
compressed excerpts and saved the decompressed audio
with 44.1 kHz sampling rate and 16-bit PCM WAYV format.
Both the MP3 encoding and MP3 decoding processes were
done with LAME [46].

When the WAV files were converted into MP3 files,
three low bitrates, mono, 96 kbps, mono, 64 kbps, and
stereo, 96 kbps, which are commonly adopted for online
music streaming services in our daily life, are considered.
For clarity, here, we describe the process of the generation
of mono MP3 audio at the three above bitrates:

1. MP3 (mono, 96 kbps): stereo audio is first downmixed
to mono audio, then the mono audio is encoded at
96 kbps.

2. MP3 (mono, 64 kbps): the process is the same as the
above one except the bitrate is set to 64 kbps.

3. MP3 (stereo, 96 kbps): stereo audio is first encoded at
96 kbps, then the only one channel is considered for
restoration, in order to compare with the above two
mono settings. Since the aforementioned deep learn-
ing-based audio restoration methods deal with the left
and right channels independently, in the experiments,
we simply selected the left channel for the music
restoration process.

It is worth noting that the MP3 encoder for stereo 96 kbps
MP3 data is essentially asked to compress the left and right
channel information at 96 kbps, ending up the compressed
left channel data (i. e., 48 kbps maximum) used for the
experiments. In contrast, the encoder for mono 96 kbps
MP3 data only requires to compress left channel data at 96
kbps. It turns out that the audio quality for stereo 96 kbps
MP3 data is worsened than the one for mono 96 kbps MP3
data. The following experimental results in terms of SNR
and LSD shown in Tables 3 and 5 confirms this statement.

For training and testing purpose, the entire data were

randomly split into the training data (70%), the validation
data (20%), and the test data (10%). All the hyper-pa-
rameters of deep neural networks were tuned based on the
minimum loss value on the validation data.

4.3 Experimental setup

To perform STFT, we used a Hann window of 1 024 and a
step size of 512. To find a trade-off between computational
cost and efficiency for music audio processing, we chop a
long music STFT sequence into a number of small sub-
sequence, each which has only 100 frames. The feature

Table 3 Objective results (in dB) for mono 96 kbps MP3 data. Higher
SNR or LSD is better

Method SNR LSD
Baseline

MP3 (mono 96 kbps) 22.07 11.61
RNNs

T-LSTM 21.88 11.60

T-BLSTM 21.62 11.52

F-LSTM 23.46 12.25
CNNs

VGG-like CNN 24.66 12.48

U-CNN [22] 18.70 11.63

WaveNet [42] 21.60 10.62
RNNs + CNNs

LSTM + VGG-like CNN 20.85 11.10

VGG-like CNN + LSTM 19.99 11.21
Our proposed method

TF-LSTM 23.68 12.39

extraction and music reconstruction are implemented by
the librosa Python package [35].

For data pre-processing, we used statistics from the
training data to perform mean subtraction and standard
divide for the input data and the target data when the input
audio representations are log-spectral power magnitudes.
For the audio reconstruction, we first undo the data pre-
processing effects for the reconstructed magnitudes and use
such magnitudes and the phase information from the input
(compressed) to run the ISTFT. For WaveNet and U-CNN,
we do not perform any data pre-processing steps for the
input and target.

We used the Adam optimiser [21] with the learning rate
of le —3 and a mini-batch size of 32 to update the
parameters. We also reduced the learning rate by a factor of
2 when the loss on the validation set stops decreasing. All
of the deep networks are implemented by the open-source
PyTorch deep learning library [45].

4.4 Objective results

We apply two metrics to objectively measuring music
audio quality, which have commonly used for assessing the
quality of enhanced signals [6, 15, 23, 29]. First, signal-to-
noise ratio (SNR) is defined as

2
SNR(x, X) = 1()10ng|32 9)
[be = 1

for a signal x and its approximation X.



Next, log-spectral distance (LSD) [15] measures the
reconstruction quality of individual frequency band, com-
puted as follows:

LSD(x, £) = — 10log,,

L w R (10)
DINES SRS )k

=1 =1

where X and X are the log-spectral power magnitudes of x
and %, respectively, L is the total number of frames, W is
the total number of frequency bins. Note that, the higher
SNR or LSD is, the better the reconstruction quality is.

Table 3 compares the performance of the proposed TF-
LSTM approach with the other state-of-the-art approaches
as outlined in Sect. 4.1 for the mono 96 kbps audio coding
restoration. From the table, we can observe that the TF-
LSTM can remarkably enhance the audio quality in a MP3
coding format by objective measures, leading to 23.68 dB
SNR and 12.39 dB LSD. Moreover, the TF-LSTM per-
forms better than all other approaches, except the VGG-
like CNN (. e., 24.66 dB SNR and 12.48 dB LSD).

More specifically, when evaluating the different kinds of
RNNs, one can see that the F-LSTM outperforms the
classic T-LSTM or T-BLSTM. This implicitly suggests
that the distorted music because of the MP3 codec com-
pression has a stronger frequency dynamics than the tem-
poral dynamics, which is, however, seldom explored in
previous works as discussed in Sect. 2. When integrating
the T-LSTM and F-LSTM into a proposed TF-LSTM
framework, the system further yields performance gain.
This demonstrates that jointly exploring the temporal and
frequency dynamics is of vital importance for the targeted
task in this paper.

We further evaluate three types of CNN networks, i. e.,
VGG-like CNN, U-CNN, and WaveNet, for the enhance-
ment systems. It can be seen that the VGG-like CNN can
perform much better than the other two, and is also notably
superior to the compressed MP3 coding format.

To take advantage of the CNNs for efficient feature
extraction and the LSTM-RNNs for context-dependence
learning, we incorporated the best CNN networks (VGG-
like CNN) and the classic LSTM networks into a joint
learning framework (i. e., LSTM + VGG-like CNN or
VGG-like CNNS + LSTM). The achieved results are
unfortunately not promising.

To access the robustness of TF-LSTM, we further car-
ried out similar experiments in two more adverse scenarios
by using the mono 64 kbps MP3 data or the stereo 96 kbps
MP3 data. The results for both scenarios are shown in
Tables 4 and 5, respectively. Similar finding is observed
that the TF-LSTM approach can improve the quality of
low-bitrate music, and is competitive to, and even superior
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Table 4 Objective results (in dB) for the mono 64 kbps MP3 data.
Higher SNR or LSD is better

Method SNR LSD
Baseline

MP3 (mono, 64 kbps) 18.43 9.39
RNNs

T-LSTM 18.53 9.56

T-BLSTM 18.66 9.64

F-LSTM 18.51 9.60
CNNs

VGG-like CNN 18.96 9.68

U-CNN [22] 16.50 9.24

WaveNet [42] 18.98 9.44
RNNs + CNN s

LSTM + VGG-like CNN 17.35 9.20

VGG-like CNN + LSTM 18.44 9.64
Our proposed method

TF-LSTM 19.22 9.78

Table 5 Objective Results (in dB) for the stereo 96 kbps MP3 data.
Higher SNR or LSD is better

Method SNR LSD
Baseline

MP3 (stereo, 96 kbps) 17.81 9.15
RNNs

T-LSTM 17.63 9.21

T-BLSTM 18.16 9.40

F-LSTM 17.84 9.33
CNNs

VGG-like CNN 17.42 9.13

U-CNN [22] 15.83 8.99

WaveNet [42] 18.33 9.35
RNNs + CNNs

LSTM + VGG-like CNN 17.17 9.03

VGG-like CNN + LSTM 17.78 9.34
Our proposed method

TF-LSTM 18.19 9.41

to, the best recently reported approaches in terms of SNR
and LSD.

More specifically, in the case of using mono 64 kbps
MP3 data, TF-LSTM beats all other state-of-the-art
approaches, and achieves the best results of 19.22 dB SNR
and 9.78 dB LSD. In the case of using stereo 96 kbps MP3
data, TF-LSTM also yields competitive results (i. e.,
18.19 dB SNR and 9.41 dB LSD) to the best ones achieved
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by WaveNet (i. e., 18.33 dB SNR and 9.35 dB LSD),
whereas the later requires higher computational cost. This
indicates that TF-LSTM is not only effective but also
robust to capture the temporal and frequency dynamics for
music restoration in different distortion scenarios.

4.5 Subjective results

The subjective listening tests were blind and crowdsourced.
Fifty music clips not included in the training data were
used for evaluation. In total, 10 subjects participated in the
Mean Opinion Score (MOS) listening test based on the
CrowdMOS toolkit and methodology given in [49]. Test
stimuli were randomly chosen and presented for each
subject. After listening to each stimulus, the subjects were
asked to rate the quality of the stimulus in a five-point
Likert scale score (1: bad, 2: poor, 3: fair, 4: good, 5:
excellent).

To reduce the experimental workload, we particularly
selected the best, rather than all, state-of-the-art approaches
evaluated by objective metrics, and compared them with
the proposed TF-LSTM in terms of MOS. Tables 6 and 7
present the MOS test results for the mono 96 kbps and
stereo 96 kbps data. From both tables, it can be seen that all
approaches achieve higher 5-scale MOSs than the mono
96 kbps and stereo 96 kbps MP3 data, suggesting that deep
neural network-based methods for music audio restoration
are feasible to improve the perceptual quality of music
signals, distorted by MP3 encoder. Moreover, the TF-
LSTM notably outperforms the WaveNet in terms of MOS
when enhancing the stereo MP3 96 kbps data.

To intuitively demonstrate the performance of TF-
LSTM, we illustrated the spectrogram of the uncompressed
audio, the MP3 one (stereo, 96 kbps), the restored one by
WaveNet, and the restored one by TF-LSTM in Fig. 3.
First, it can be found that WaveNet can regenerate high-
frequency information (15-22.05 kHz), but the spectral
holes made by the MP3 encoding are still untouched and
the generated frequency information is like random noise
instead of harmonic patterns. In comparison, the spectral
holes of TF-LSTM seem to be visibly “smeared”,

Table 6 Subjective 5-scale mean opinion scores (MOS) of music
samples from 10 subjects for mono 96 kbps MP3 data

Method MOS

Uncompressed (mono) 3.85+0.89
MP3 (mono, 96 kbps) 3.74 £ 0.95
VGG-like CNN 3.83+0.92
TF-LSTM 3.78 £0.93

Table 7 Subjective 5-scale mean opinion scores (MOS) of music
samples from 10 subject for the stereo 96 kbps MP3 data

Method MOS

Uncompressed ( left channel) 3.87 £0.99
MP3 (stereo, 96 kbps) 3.69 +£0.98
WaveNet [42] 3.76 = 0.92
TF-LSTM 3.83 +0.89

indicating TF-LSTM indeed recovers the missing spectral
information.

Moreover, we calculated the average spectral distance
between the uncompressed music audio, and the MP3 one
(stereo, 96 kbps), the restored one by WaveNet, the
restored one by TF-LSTM. Here, the absolute error
between the average magnitude of x and that of X is com-
puted as a measure of the average spectral distance. The
average spectral distance is mathematically defined as
follows:

L L
A ) = 73X 1 S X(.f)| (i)
=1 =1

The results are plotted in Fig. 4. Among the frequency
range [0, 15 kHz], the figure clearly shows that the TF-
LSTM approach holds lower average spectral distance than
MP3 and WaveNet, which consequently leads to a better
quality performance in music restoration.

5 Conclusions and outlook

To enhance the quality of music audio based on spectral
correlations, we have proposed a novel Time-Frequency-
LSTM-RNN (TF-LSTM) architecture to advantageously
exploit temporal and spectral dynamics. A TF-LSTM-RNN
network is equipped with two separate LSTM-RNN layers
so that it is capable of effectively modeling two-dimen-
sional time-frequency information. Leveraging the power
of TF-LSTM, our proposed system for audio restoration
can learn a nonlinear mapping from the spectral magni-
tudes of low-quality (compressed) audio to those of high-
quality (uncompressed) audio. Objective and subjective
listening test results demonstrate that TF-LSTM restored
audio samples outperform the MP3 audio and the audio
signals enhanced by other state-of-the-art deep neural
networks.

In the future, we plan to leverage psychoacoustic models
so that deep nets can better focus on audible artifacts, e. g.,
by employing a perceptual loss function. Besides, the
achieved performance improvement reported in this paper



1105

+0 dB +0 dB
20,000 20,000
g 15,000 g 15,000
I 40 dB & 40 dB
£ 10,000 ) § 10,000 i
g g
= =
5,000 5,000
0 -80 dB 0 -80 dB
0 15 3 45 6 7.5 9
Time (s) Time (s)
(a) Uncompressed (b) MP3 (stereo, 96 kbps)
+0dB +0dB
20,000 20,000
g 15,000 g 15,000
g 40 dB g 40 dB
€ 10,000 i g 10,000 .
g g
= =
5,000 5,000
0 -80 dB 0 -80 dB
0 15 3 45 6 7.5 9
Time (s)
(c) WaveNet (d) VGG-like CNN
+0dB
20,000
g 15,000
¢ 40 dB
g 10,000 )
g
=
5,000
0 - -80 dB
0 15 3 45 6 75 9
Time (s)
(e) TF-LSTM
Fig. 3 Illustration of spectral enhancement using the proposed TF-LSTM-RNNs
e — CNN and CNN-based WaveNet establish the ability of
60 M (stereo, 96 kbps) ; . . .
) WaveNet Wi addressing the music restoration task, we also plan to
= VGG-like CNN . R K .
g 10 — TFIsSTM : continue to investigate other CNN-based CNN architec-
3 B VAN tures for this challenging problem.
£ 20 § i \
[;% N
T
I I I I . . .
0 5,000 10,000 20,000 Compliance with ethical standards
Frequency (Hz)
Fig. 4 Tllustration of average spectral distance F(;nﬂlc:: of interest The authors declare that they have no conflict of
interest.

was made by only recovering spectral magnitudes.
Acoustic phase information is yet to be considered in future
work. We believe that this will enable a new experience of
compressed music enjoyment and perhaps allow for even
better compression algorithms. Further, as the VGG-like
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