Skip to main content

Water Surface Simulation Based on Perlin Noise and Secondary Distorted Textures

  • Conference paper
  • First Online:
Advances in Computer Science and Ubiquitous Computing (UCAWSN 2016, CUTE 2016, CSA 2016)

Abstract

Simulation of water surface is an important topic in computer graphic. In this paper we propose a fast method to simulate the reflection and refraction of water surface in high quality based on Perlin noise. This method generates the first reflect mapping through mirror reflect. Then the Perlin noise is used to distort the first texture map to generate the secondary reflect mapping which is prospectively projected onto the final surface. Experiment results show that our method can generate high quality reflection with fewer artifacts of reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fournier, A., Reeves, W.T.: A simple model of ocean waves. ACM Siggraph Comput. Graph. 20(4), 75–84 (1986)

    Article  Google Scholar 

  2. Peachey, D.R.: Modeling waves and surf. In: ACM Siggraph Computer Graphics, pp. 65–74. ACM, August 1986

    Google Scholar 

  3. Schachter, B.: Long crested wave models. Comput. Graph. Image Process. 12(2), 187–201 (1980)

    Article  Google Scholar 

  4. Tessendorf, J.: Simulating ocean water. Simulating nature: realistic and interactive techniques. SIGGRAPH 1(2), 5 (2001)

    Google Scholar 

  5. English, R.E., Qiu, L., Yu, Y., Fedkiw, R.: Chimera grids for water simulation. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 85–94. ACM, July 2013

    Google Scholar 

  6. Nishita, T., Nakamae, E.: Method of displaying optical effects within water using accumulation buffer. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 373–379. ACM, July 1994

    Google Scholar 

  7. Watt, M.: Light-water interaction using backward beam tracing. ACM SIGGRAPH Comput. Graph. 24(4), 377–385 (1990)

    Article  Google Scholar 

  8. Hinsinger, D., Neyret, F., Cani, M.P.: Interactive animation of ocean waves. In: Proceedings of the 2002 ACM SIGGRAPH, Eurographics Symposium on Computer Animation, pp. 161–166, July 2002

    Google Scholar 

  9. Premoze, S., Ashikhmin, M.: Rendering natural waters. Comput. Graph. Forum 20(4), 189–199 (2001)

    Article  MATH  Google Scholar 

  10. Chentanez, N., Müller, M.: Real-time simulation of large bodies of water with small scale details. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 197–206. Eurographics Association, July 2010

    Google Scholar 

  11. Humphrey, B.: Realistic water using bump mapping and refraction, Retrieved June 2006

    Google Scholar 

  12. Truelsen, R.: Real-time shallow water simulation and environment mapping and clouds (2007)

    Google Scholar 

  13. Perlin, K.: An image synthesizer. ACM Siggraph Comput. Graph. 19(3), 287–296 (1985)

    Article  Google Scholar 

  14. Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D.S., Zwicker, M.: A survey of procedural noise functions. Comput. Graph. Forum 29(8), 2579–2600 (2010). Blackwell Publishing Ltd.

    Article  Google Scholar 

  15. Bridson, R., Houriham, J., Nordenstam, M.: Curl-noise for procedural fluid flow. ACM Trans. Graph. (TOG) 26(3), 46 (2007)

    Article  Google Scholar 

  16. Bruneton, E., Neyret, F., Holzschuch, N.: Real-time realistic ocean lighting using seamless transitions from geometry to BRDF. Comput. Graph. Forum 29(2), 487–496 (2010). Blackwell Publishing Ltd.

    Article  Google Scholar 

  17. Neider, J., Davis, T., Woo, M.: OpenGL Programming Guide. Addison-Wesley, New York (1993)

    Google Scholar 

  18. Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. Comput. Graph. Forum 33(6), 31–50 (2014)

    Article  Google Scholar 

  19. Perlin K, Neyret F. Flow noise. In: ACM SIGGRAPH Technical Sketches and Applications, p. 187. (2001)

    Google Scholar 

  20. Perlin, K., Hoffert, E.M.: Hypertexture. ACM SIGGRAPH Comput. Graph. 23(3), 253–262 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by development project of Jilin province science and technology (20140204009GX), Jilin upgrade industrial innovation special fund projects(2016C091) and major scientific and technological plan of Changchun (14KG008, 14KG013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, H., Yang, H., Xu, C., Cao, Y. (2017). Water Surface Simulation Based on Perlin Noise and Secondary Distorted Textures. In: Park, J., Pan, Y., Yi, G., Loia, V. (eds) Advances in Computer Science and Ubiquitous Computing. UCAWSN CUTE CSA 2016 2016 2016. Lecture Notes in Electrical Engineering, vol 421. Springer, Singapore. https://doi.org/10.1007/978-981-10-3023-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3023-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3022-2

  • Online ISBN: 978-981-10-3023-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics