Skip to main content

An AWGR-Based High Performance Optical Interconnect Architecture for Exascale Systems

  • Conference paper
  • First Online:
Book cover Computer Engineering and Technology (NCCET 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 666))

Included in the following conference series:

  • 590 Accesses

Abstract

The next milestone objective of HPC is exascale computing, which includes millions of nodes in the system. One of the key critical barrier toward realizing exascale computing is the fundamental challenge of communication networks. We propose a high performance optical interconnect architecture based on Arrayed waveguide grating router (AWGR) with WDM wavelength routing, the inherent parallelism in AWGRs and multi-hop switching provide high scalability of the network. Theoretical analysis and simulation show its better performance compared with fat-tree architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamei, S., Ishii, M., Itoh, M., Shibata, T., Inoue, Y., Kitagawa, T.: 64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module. Electron. Lett. 39, 83–84 (2003)

    Article  Google Scholar 

  2. Yu, R., Cheung, S., Li, Y., Okamoto, K., Proietti, R., Yin, Y., et al.: A scalable silicon photonic chip-scale optical switch for high performance computing systems. Opt. Express 21, 32655–32667 (2013). 2013/12/30

    Article  Google Scholar 

  3. Chia, M.C., Hunter, D.K., Andonovic, I., Ball, P., Wright, I., Ferguson, S.P., et al.: Packet loss and delay performance of feedback and feed-forward arrayed-waveguide gratings-based optical packet switches with WDM inputs-outputs. J. Lightwave Technol. 19, 1241–1254 (2001). 2013/12/30

    Article  Google Scholar 

  4. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, August 2008

    Google Scholar 

  5. Rumley, S., Nikolova, D., Hendry, R., Li, Q.: Silicon photonics for exascale systems. J. Lightwave Technol. 33(3), 547–562 (2015)

    Article  Google Scholar 

  6. Binkert, N., Davis, A., Jouppi, N.P., McLaren, M., Muralimanohar, N., Schreiber, R., et al.: The role of optics in future high radix switch design. In: 2011 38th Annual International Symposium on Computer Architecture (ISCA), pp. 437–447 (2011)

    Google Scholar 

  7. Beausoleil, R.G.: Large-scale integrated photonics for high-performance interconnects. ACM J. Emerg. Technol. Comput. Syst. (JETC) 7, 6 (2011)

    Google Scholar 

  8. Yoo, S.J.B.: Optical packet and burst switching technologies for the future photonic Internet. J. Lightwave Technol. 24, 4468–4492 (2006)

    Article  Google Scholar 

  9. O’Mahony, M.J., Simeonidou, D., Hunter, D.K., Tzanakaki, A.: The application of optical packet switching in future communication networks. IEEE Commun. Mag. 39, 1280135 (2001)

    Google Scholar 

  10. Guillemot, C., Renaud, M., Gambini, P., Janz, C., Andonovic, I., Bauknecht, R., et al.: Transparent optical packet switching: the European ACTS KEOPS project approach. J. Lightwave Technol. 16, 2117–2134 (1998)

    Article  Google Scholar 

  11. Absil, P.P., De Heyn, P., Dumon, P., Van Thourhout, D., Verheyen, P., Selvaraja, S., et al.: Advances in silicon photonics WDM devices, pp. 90100J-1–90100J-7 (2014)

    Google Scholar 

  12. Fang, Q., Liow, T.-Y., Song, J.F., Ang, K.W., Yu, M.B., Lo, G.Q., et al.: WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability. Opt. Express 18, 5106–5113 (2010). 2010/03/01

    Article  Google Scholar 

  13. Cao, Z., Proietti, R., Yoo, S.J.B.: Photonics Conference (IPC), pp 180–181, October 2014

    Google Scholar 

  14. Feng, Q.Y., Sang, X.Z., Dou, W.H.: Demonstration of a 5 Gb/s 24 interchip optical interconnect system. Microw. Opt. Technol. Lett. (2012)

    Google Scholar 

  15. Xie, M., Lu, Y.T., Wang, K.F., Liu, L., Cao, H.J., Yang, X.J.: TIANHE-1A interconnect and essage-passing services. IEEE Micro Mag. (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for the feedback and revision suggestions. Then, we would thank China 863 Program (2015AA015302) and NSFC (61572509) for providing the assistance to make this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Xu, S., Zhang, L., Li, Z. (2016). An AWGR-Based High Performance Optical Interconnect Architecture for Exascale Systems. In: Xu, W., Xiao, L., Li, J., Zhang, C., Zhu, Z. (eds) Computer Engineering and Technology. NCCET 2016. Communications in Computer and Information Science, vol 666. Springer, Singapore. https://doi.org/10.1007/978-981-10-3159-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3159-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3158-8

  • Online ISBN: 978-981-10-3159-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics