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Supervisor’s Foreword

Neuroimaging has transformed the way we study the human brain under both
normal and pathological conditions. The anatomical and functional information in
neuroimaging data has an important role in both brain research and clinical man-
agement of neurological and psychiatric disorders. In order to extract such infor-
mation, advance our understanding of brain disorders and accelerate its translational
impact, we need to develop innovative computational algorithms and methods to
process and analyze these high-dimension and high-volume neuroimaging data.

Multimodal neuroimaging data, acquired from the same subject with different
neuroimaging techniques or protocols, such as PET/CT, PET/MRI and MRI/DTI,
enables us to explore the different brain functions and structures at the same time.
However, computing the information in multimodal data is even more challenging,
due to the inconsistent image temporal / spatial resolutions, contrasts, and qualities.
As a result, multimodal neuroimaging computing always involves pre-processing,
feature extraction, pattern recognition, and visualization techniques, varying in
applications.

This book covers many aspects of brain image computing methods, and illustrates
the scientific understanding of neurodegenerative disorders cohering around 4
general themes of multimodal neuroimaging computing, including neuroimaging
data pre-processing, brain feature modeling, pathological pattern analysis, and
translational model development. It demonstrates how multimodal neuroimaging
computing techniques can be integrated and applied into neurodegenerative disease
research and management, with many examples and case studies. It also contains a
number of interesting extension topics, including longitudinal neuroimaging study,
subject-centered analysis, and brain connectome. In all, this book introduces a series
of innovative approaches and fundamental techniques in neuroimaging computing,
which will greatly benefit the neuroscience researchers and neurology practitioners
who are interested in medical image computing and computer-assisted interventions.

Sydney
October 2016

A/Prof. Weidong (Tom) Cai
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Abstract

Neurodegenerative disorders, such as Alzheimer’s Disease (AD), Parkinson’s
Disease (PD), Vascular Dementia (VD) and Frontotemporal Dementia (FTD), will
become a global burden over the forthcoming decade due to the increase of aging
populations. The characterization of neurodegenerative disorders has an important
role in patient care and treatment planning, especially in the early stage of the
disease, since current disease modifying agents are mainly effective before the
clinical symptoms appear.

The revolutionary non-invasive neuroimaging technologies have transformed the
way we study the brain, and become an essential component in the management of
neurodegenerative disorders. The growth of neuroimaging studies has spurred a
parallel development of image computing methods, which focus on the computa-
tional analysis of the brain images using both computer science and neuroscience
techniques.

Multimodal neuroimaging enhances the neuroscience research by compensating
the shortcomings of individual imaging modalities and by identifying the common
findings from different imaging sources. Multimodal neuroimaging has become one
of the major drivers in neurodegeneration research due to the recognition of the
clinical benefits of the multimodal data and better access to the imaging devices.
There is an imperative need for the development of novel multimodal neuroimaging
analysis methods to address the variations in spatiotemporal resolution and merge
the biophysical/biochemical information in multimodal neuroimaging data, thus
enabling more accurate characterization of the complex pattern of neurodegenera-
tive pathologies.

This study aims to advance our understanding of neurodegeneration using the
multimodal neuroiamging techniques. A series of models and methods were
developed and further validated through a large-scale systematic analysis on the
multimodal neuroimaging datasets acquired from over 800 subjects in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. We designed a set of
pre-processing protocols to control the quality of the datasets, then proposed a
number of hand-engineered and learning-based features to model the brain mor-
phological and functional changes associated with neurodegeneration. We further
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designed a multi-channel pattern analysis approach to identify the key brain regions
associated with different neurodegenerative pathologies, and a cross-view pattern
analysis approach to predict the synergy between these features in joint analysis of
multimodal data. Finally, two clinical applications were developed to translate the
research findings into improved diagnostic tools, both showing great potential in the
management of Alzheimer’s disease and mild cognitive impairment. A few
extensions of these methods, including longitudinal neuroimaging analysis,
subject-centered therapy, and brain connectome, are also demonstrated and dis-
cussed in this work.
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