Skip to main content

Two-Digit Full Subtractor Logical Operation Based on DNA Strand Displacement

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Abstract

DNA strand displacement has been widely used in designing the molecular logic circuit, nanomedicine and molecular automata and so on. In this article, the two-digit full subtractor is designed by DNA strand displacement reaction and has been verified by the simulation of DNA strand displacement. The accuracy of simulation results is further confirmed that DNA strand displacement is a valid method for the research of logical bio-chemical circuit. The multi-digit full subtractor could be used in biological computer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaver, D.: Computing with DNA. J. Comput. Biol. 3, 254–257 (1996)

    Google Scholar 

  2. Xu, J., Qiang, X., Yang, Y., et al.: An unenumerative DNA computing model for vertex coloring problem. IEEE Trans. Nanobiosci. 10, 94–98 (2011)

    Article  Google Scholar 

  3. Chen, Y.J., Dalchau, N., Srinivas, N., et al.: Programmable chemical controllers made from DNA. Nature Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  4. Yurke, B., Turberfield, A.J., Mills, A.P., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  5. Mao, C., LaBean, T.H., Reif, J.H., et al.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  6. Santini, C.C., Bath, J., Turberfield, A.J., et al.: A DNA network as an information processing system. Int. J. Mol. Sci. 13, 5125–5137 (2012)

    Article  Google Scholar 

  7. Shin, J.C.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  8. Lund, K., Manzo, A.J., Dabby, N., et al.: Molecular robots guided by prescriptive land-scapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  9. Rahul, C., Jaswinder, S., Yan, L., Sherri, R., Hao, Y.: DNA self-assembly for nanomedicine. Adv. Drug. Deliver. Rev. 62, 617–625 (2010)

    Article  Google Scholar 

  10. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  11. Lederman, H., Macdonald, J., Stephanovic, D., Stojanovic, M.N.: Deoxyribozymebased three-input logic gates and construction of a molecular full adder. Biochemistry 45, 1194–1199 (2006)

    Article  Google Scholar 

  12. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18305-8_3

    Chapter  Google Scholar 

  13. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011)

    Article  Google Scholar 

  14. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  15. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)

    Article  Google Scholar 

  16. Zhang, C., Ma, L.N., Dong, Y.F., et al.: Molecular logic computing model based on DNA self-assembly strand branch migration. Chinese. Sci. Bull. 58, 32–38 (2013)

    Article  Google Scholar 

  17. Shi, X.L., Lu, W., Wang, Z.Y., Pan, L.Q., Cui, G.Z., Xu, J., LaBean, T.H.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25(7), 075602 (2014)

    Article  Google Scholar 

  18. Shi, X.L., Wang, Z.Y., Deng, C.Y., Song, T., Pan, L.Q., Chen, Z.H.: A novel bio-sensor based on DNA strand displacement. PLoS ONE 9(10), e108856 (2014). doi:10.1371/journal.pone.0108856

    Article  Google Scholar 

  19. Yang, J., Dong, C., Dong, Y.F., Liu, S., Pan, L.Q., Zhang, C.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. Interfaces 6(16), 14486–14492 (2014)

    Article  Google Scholar 

  20. Xu, J.: Probe machine. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1405–1416 (2016)

    Article  MathSciNet  Google Scholar 

  21. Wang, Y., Tian, G., Hou, H., et al.: Simple logic computation based on the DNA strand displacement. J. Comput. Theor. Nanosci. 11, 1975–1982 (2014)

    Article  Google Scholar 

  22. Cui, G., Zhang, J., Cui, Y., et al.: DNA strand-displacement digital logic circuit with fluorescence resonance energy transfer detection. J. Comput. Theor. Nanosci. 12, 2095–2100 (2015)

    Article  Google Scholar 

  23. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  24. Zhang, D.Y.: Towards domain-based sequence design for DNA strand displacement reactions. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 162–175. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18305-8_15

    Chapter  Google Scholar 

  25. Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. Program. Evol. Mach. 4, 111 (2003). doi:10.1023/A:1023928811651

    Article  Google Scholar 

  26. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., et al.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)

    Article  Google Scholar 

  27. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11295-4_9

    Google Scholar 

  28. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193(12), 193–200 (2016)

    Article  Google Scholar 

  29. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. (2016). doi:10.1109/TNB.2016.2598879

    Google Scholar 

  30. Song, T., Pan, Z., Wong, D.M., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  31. Wang, X., Song, T., Gong, F., Pan, Z.: On the computational power of spiking neural P systems with self-organization. Scientific reports. doi:10.1038/srep27624

  32. Shi, X., Wu, X., Song, T., Li, X.: Construction of DNA nanotubes with controllable diameters and patterns by using hierarchical DNA sub-tiles. Nanoscale 8, 14785–14792 (2016). doi:10.1039/C6NR02695H

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61632002), the National Natural Science Foundation of China (Grant Nos. 61472371, 61472372, 61572446, 61602424 and 61603348), China Postdoctoral Science Foundation funded project (Grant No. 2015M570641 and 2016T90687), Basic and Frontier Technology Research Program of Henan Province (Grant No. 162300410220), Key Program of Higher Education of China Henan Province (Grant No. 17A120005) and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Sun, J., Li, X., Huang, C., Cui, G., Wang, Y. (2016). Two-Digit Full Subtractor Logical Operation Based on DNA Strand Displacement. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics