Skip to main content

Logic Gate Based on Circular DNA Structure with Strand Displacement

  • Conference paper
  • First Online:
Book cover Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 681))

  • 1034 Accesses

Abstract

In this work, we fabricated two logic gates based on circular DNA structure – XOR gate and AND gate calculation model with the principle of complementary base pairing and the technology of fluorescence labeling. Whereafter, we constructed a simple half-adder model based on the two logic gates. This model is simple, but it can realize more complex logic operations in theory. And the experiment process is convenient to operate, the results are easy to realize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman, L.M.: Molecular computations to combinatorial problems. Sci. New. Ser. 266(5187), 1021–1024 (1994)

    Google Scholar 

  2. Katsikis, G., Cybulski, J.S., Prakash, M.: Synchronous universal droplet logic and control. Nat. Phys. 11(7), 588–596 (2015)

    Article  Google Scholar 

  3. Kramer, B.P., Fischer, C., Fussenegger, M.: BioLogic gates enable logical transcription control in mammalian cells. Biotechnol. Bioeng. 87(4), 478–484 (2004)

    Article  Google Scholar 

  4. Yong, L., Wang, L., Hea, K.: A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly. Nanoscale 8(16), 8591–8599 (2016)

    Article  Google Scholar 

  5. Fu, X.F., Sun, W., Guo, R.: Molecular logic function materials. Progr. Chem. 21(5), 957–963 (2009)

    Google Scholar 

  6. Arun, V., Shukla, N.K., Singh, A.K.: Design and performance analysis of multiple all optical logic gates in a single photonic circuit. Opt. Quantum Electron. 48(1), 236–244 (2016)

    Article  Google Scholar 

  7. Bhoj, A.N., Simsir, M.O., Jha, N.K.: Fault models for logic circuits in the multigate era. IEEE Trans. Nanotechnol. 1(11), 182–193 (2012)

    Article  Google Scholar 

  8. Graugnard, E., Kellis, D.L., Bui, H., Barnes, S., Hughes, W.L., Yurke, B.: DNA-controlled excitonic switches. Nano Lett. 12(47), 2117–2122 (2012)

    Article  Google Scholar 

  9. Zhang, C., Wu, L., Yang, J., Liu, S., Xu, J.: A molecular logical switch beacon controlled by thiolated DNA signals. Chem. Commun. 3(49), 11308–11310 (2013)

    Article  Google Scholar 

  10. Shi, X.L., Lu, W., Wang, Z.Y., Pan, L.Q., Cui, G.Z., Xu, J., LaBean, T.H.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25(7), 075602 (2014)

    Article  Google Scholar 

  11. Yang, J., Dong, C., Dong, Y.F., Liu, S., Pan, L.Q., Zhang, C.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. Interfaces 6(16), 14486–14492 (2014)

    Article  Google Scholar 

  12. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193(2), 193–200 (2016)

    Article  Google Scholar 

  13. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. (2016). doi:10.1109/TNB.2016.2598879

    Google Scholar 

  14. Song, T., Pan, Z., Wong, D.M., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  15. Wang, X., Song, T., Gong, F., Pan, Z.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. doi:10.1038/srep27624

  16. Shi, X., Wu, X., Song, T., Li, X.: Construction of DNA nanotubes with controllable diameters and patterns by using hierarchical DNA sub-tiles. Nanoscale. doi:10.1039/C6NR02695H

    Google Scholar 

  17. Fan, W.P., Bu, W.B., Shi, J.L.: On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 28(21), 3987–4011 (2016)

    Article  Google Scholar 

  18. Vickery, A., Mulholland, A.J., Kamp, V.: On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55(12), 1681–1688 (2016)

    Article  Google Scholar 

  19. Zhang, C., Yang, J., Jiang, S.X., Liu, Y., Yan, H.: DNAzyme-based logic gate-mediated DNA self-assembly. Nano Lett. 16(1), 736–741 (2016)

    Article  Google Scholar 

  20. Jing, Y., Dong, Y.F., Pan, L.Q.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. 6(16), 14486–14492 (2014)

    Article  Google Scholar 

  21. Chen, C.W.: Segmentation of DNA using simple recurrent neural network. Knowl. Based Syst. 1(26), 271–280 (2012)

    Article  Google Scholar 

  22. Xu, J.: Probe machine. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1405–1416 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhu, Q.C., Liu, G., Kai, M.: DNA aptamers in the diagnosis and treatment of human diseases. Molecules 20(12), 20979–20997 (2015)

    Article  Google Scholar 

  24. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)

    Article  Google Scholar 

  25. Zhou, X., Wu, X., Yoon, J.: A dual FRET based fluorescent probe as a multiple logic system. Chem. Commun. (Camb.) 51(1), 111–113 (2015)

    Article  Google Scholar 

  26. Li, W., Zhang, F., Yan, H., Liu, Y.: DNA based arithmetic function: a half adder based on DNA strand displacement. Nanoscale 8(6), 3775–3784 (2016)

    Article  Google Scholar 

  27. Marco, B., Eugenia, O.M.: Programming self-assembly of DNA tiles. Fundamenta Informaticae 143(1–2), 35–49 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61602424, 61472371, 61472372, 61572446), Basic and Frontier Technology Research Program of Henan Province (Grant No. 142300413214), Program for Science and Technology Innovation Talents in Universities of Henan Province (Grant No. 15HASTIT019), and Young Backbone Teachers Project of Henan province (Grant No. 2013GGJS-106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuncai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Cui, G., Wang, X., Zhang, X., Niu, Y., Liu, H. (2016). Logic Gate Based on Circular DNA Structure with Strand Displacement. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics