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Abstract. Short-term traffic flow forecasting is a vibrant research topic
that has been growing in interest since the late 70’s. In the last decade
this vibrant field has shifted its focus towards machine learning methods.
These techniques often require fine-grained parameter tuning to obtain
satisfactory performance scores, a process that usually relies on man-
ual trial-and-error adjustment. This paper explores the use of Harmony
Search optimization for tuning the parameters of neural network jointly
with the selection of the input features from the dataset at hand. Re-
sults are discussed and compared to other tuning methods, from which
it is concluded that neural predictors optimized via the proposed heuris-
tic wrapper outperform those tuned by means of naive parametrized
algorithms, thus allowing for longer-term predictions. These promising
results unfold potential applications of this technique in multi-location
neighbor-aware traffic prediction.

Keywords: Traffic forecasting; Neural networks; Bioinspired heuristics

1 Introduction

Forecasting traffic conditions is a key element in the development of Intelli-
gent Transport Systems (ITS), providing the means to implement management
(ATMS) and information (ATIS) systems for both road managers and users.
Anticipating future traffic can aid the first to regulate signals, lanes and to cope
with congestion, and the latter to plan travels and select the best routes to
their destinations. For decades, researchers have built traffic models to predict
volume, occupancy, speed, travel time or level of service, consisting of elements
from time-series analysis in the beginning, and later evolving to non-parametric
and machine learning models such as kNN, Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Bayesian Networks and Fuzzy Logic models,
among others [1]. In the last decade an upsurge of traffic-related data has become



available, which has lead, along with advances in computational technologies and
machine learning techniques, to a noticeable research drift towards data-driven
approaches, with more diverse and abundant data sources that conform large
databases with hidden knowledge to be discovered by pattern recognition algo-
rithms. Changes are also observable in predicted variables, which tend to become
more user-friendly (travel time versus volume) and in the scope of predictions
which are increasingly urban and network-wide [2].

In this context, ANNs and their combination with other methods have been
extensively used with relative success over naive (historic average and last mea-
surement predictions) and time-series models [3-7], fueled by prior literature
evincing that ANNs are more responsive to changes in data [8]. However, neural
networks behave in a black-box manner that hinders their understanding. Fur-
thermore, their internal structure and training process is known to be a slow and
inefficient trial-and-error procedure. In this regard, seeking the optimal neural
network structure started to be automated with bio-inspired heuristics [9]. In
particular for the transport sector, Genetic Algorithms (GA) were first explored
for refining the calibration parameters that enhanced neural network behavior
without linking them to particular traffic characteristics, thus increasing gen-
eralization capacity of the model [10]. Researchers have used GA optimization
[10-12] and other bio-inspired methods for configuring neural networks, such
as Particle Swarm Optimization (PSO) in recent short-term traffic prediction
literature [13, 14], with significant results.

This research work will delve into the use of an specific meta-heuristic algo-
rithms as a hyperparameter tuning wrapper for complex neural networks. To be
concise the so-called Harmony Search (HS) algorithm [15] will be used to cal-
ibrate a multi-layer perceptron (MLP), which to the knowledge of the authors
has not been so far used to this end. The proposed scheme will yield a set of
neural network configurations for which the “best” one will balance the trade-
off between accuracy and MLP training time. The meta-optimized MLP model
will be used to predict traffic flow in an urban center location in Madrid, where
recent reports have revealed a high seasonal dependence and a stable behavior
that complicates outperforming naive approaches [16]. 15-minute resolution traf-
fic flow data of one entire year will be explored with different time windows and
prediction horizons to show the promising performance of the models optimized
by means of our proposed wrapper.

2 Materials and Methods

Flow is one of the most predicted traffic features [2] and embodies the data
substrate on which most traffic models are built. Road traffic can be quantified
by the amount of vehicles per hour crossing a certain link of the road network
and it is measured, among others, with Automatic Traffic Recorders (ATR)
sensors, magnetic loops embedded in roads that are able to count how many
vehicles pass over them. Around 3700 of these ATRs are at the disposal of the
Madrid City Council, with readings taken every 5 minutes. Traffic flow and



other metric measurements obtained from traffic counts are published in a live
feed in the Madrid Open Data portal [17]. The portal also provides historically
aggregated traffic flow data with 15 minute granularity. From the latter data
collection, a year worth of traffic flow data has been extracted and processed so
as to compose the target dataset tackled in this work. These data correspond
to the year 2015 for model building (training and validation), whereas the first
three months of 2016 are left out to test the generalization performance of the
optimized predictive model.

Table 1. Description of the loops under consideration

Loop Location Details
A C. Alcald and C. O’Donnell  City centre, intersection in a 4-lane road
Av. Monforte de Lemos and

B Av. Betanzos Urban residential area

This research work focuses on two loops placed in a residential and a center
area of Madrid (Table 1). Thus prediction models are built for locations with
very dissimilar traffic and optimization results can be compared and assessed
disregarding any particular set of traffic conditions. As noted in Figure 1, there
are substantial differences between both locations, introducing diversity to the
study. Besides, a completeness criterion has been used to select the sensor loca-
tions: for all the loops deployed in this city, the available data are incomplete,
and in some cases invalid, but some loops are considerable more complete than
others. Both loops provide ca. 30000 valid flow readings corresponding to the
whole year which, along with timestamps, are used to build the datasets based
on three specifications: 1) step, i.e. the time between two readings (in this case
15 minutes); 2) depth or window size, namely, the time span of past observations
that are used in each instance; and 3) prediction horizon, i.e. the number of steps
into the future for which the prediction is made.

For a certain timestamp these readings configure a dataset with n features,
which are the n observations prior to the timestamp, being n the window size.
The target variable is defined by the observation ¥, corresponding to y slots
after the timestamp, as explained in Figure 3. Initially, a dataset for each loop
has been created with default parameters. To begin with, the forecast horizon
is set to 4 and 8 time steps (i.e. 1 and 2 hours into the future), which is in
accordance with the literature on short-term traffic prediction with horizons
normally shorter than one hour [1,2]. The window size is fixed to 8 steps, so the
predictions are based in the previous 2 hours of observations. Indeed tailoring
the window size is crucial for the predictive model, but unfortunately its value
is strongly determined by the scenario at hand as the information provided by
features in the window can be very divergent in different traffic areas [19]. Figure
2 shows the evolution of the average traffic over the slots of a day; in consonance
with the stability of the observations, it is expected that for a residential loop
this parameter becomes less relevant. Adjusting this window is a vibrant research
topic [20] for which optimization strategies as the one presented in this paper
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Fig. 1. Comparison of the day-average traffic flow registered by the two considered
loops along the year. The x axis represents each one of the days in the sample. The
loop in the city center has well-defined periods, while the loop in a residential area is
more stable through the year. Empty days represent no available data.

take a key role in finding the best window sizes. In this research work window
sizes of each location will be jointly optimized (along with regression model
parameters) by the HS heuristic.
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Fig. 2. Year-averaged traffic flow on each slot of the day for both loops.

Once both datasets are created with above defined terms, they are splitted
in 10 random parts, leaving 9 for training and 1 for test. This process is repeated
10 times, feeding each of the training subsets to the regression algorithm, and
testing it against the test subset. A R? performance metric is obtained in each
execution, and they are averaged to obtain the model performance, as depicted
in Figure 3.



2.1 Regression and Optimization

Our regression algorithm is a multilayer perceptron. Artificial Neural Networks
(ANNs) have been extensively used for traffic forecasting applications, being
the most extended non-parametric method used [1]. Multilayer perceptron falls
under the feed-forward networks category [21], and is able to model highly non-
linear patterns. An input vector is mapped to output through layers of weighted
neurons with activation functions. In this research, logistic activation is used,
whereas the rest of the MLP architecture is left undefined for its optimization
through the proposed scheme. In the previous literature it is usual that the MLP
configuration hinges on a trial-and-error process that does not always yield a
configured MLP that outperforms other approaches such as ARIMA models. For
this reason a default parameter setting often used in other related contributions
has been used as an initial baseline for comparison. Then, the regressor model is
wrapped by means of an optimization algorithm that iteratively refines such a
baseline configuration. In the last decade, optimization techniques have allowed
a considerable improvement in ANNs performance [20]. However, to the best of
the authors’ knowledge there is no previous evidence of Harmony Search applied
to the optimization of neural networks, nor has this heuristic been used to select
features jointly with the model configuration.
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Fig. 3. Definition of the core predictive model.

Evolutionary algorithms are heuristic search techniques, and their operation
grounds on the evolution of a group of candidate solutions towards progressively
better individuals, with their quality defined by a fitness function. This evolu-
tionary process finds its inspiration in the concept of natural evolution, encom-
passing selection, crossover and mutation of individuals [18]. Harmony Search
(HS) can be thought of as being a specific yet differently motivated evolutionary
solver, which imitates the seek of harmonies in a musical improvisation process
to optimize a set of variables under a measure of quality. To do so, a vector of
parameters and their boundaries are defined. Besides, HS wrapper is arranged



to seek the optimal depth of each dataset. Figure 4 shows a harmony search
implementation that jointly optimizes the feature selection and neural network
parameter settings.
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Fig. 4. Definition and operation of the HS wrapper.

The HS algorithm requires input parameters that define its memory (hms),
number of improvisations (I), and fitness function. At each iteration all raw data
are used to build a new different dataset depending on the window size selected
by the solution vector provided by HS, and evaluates the performance of the re-
gression model by averaging over the scores produced by 10-fold cross-validation
of the built dataset. The average R? metric obtained from the MLP over the 10
folds is the fitness function to maximize. In terms of computation a complete it-
eration takes around 2 minutes in an Intel i7 processor, which amounts up to an
average of 720 iterations per day on a dedicated machine. We have set hms = 25
harmonies in the pool of candidate solutions, and a total of I = 2000 iterations.
Besides these parameters we have set hmer = 0.75, par = 0.2, mpai = 3 (maxi-
mum pitch adjustment for discrete variables) and mpap = 0.25 (maximum pitch
adjustment for continuous variables).

Table 2 shows the MLP parameters chosen to optimize with their default
values and maximum and minimum boundaries set for the experiment. Depth
value has been set to take values between 4 and 48 steps, or 1 and 12 hours
of previous observations. For the neural network, default values are taken as a



reference and for continuous variables, with maxima and minima one order of
magnitude higher and lower, respectively. For discrete variables, boundaries are
defined considering their purpose and operation.

Table 2. Optimized set of variables default values and boundaries.

Parameter Type Default Min. Max.
Depth Discrete 8 4 48
Hidden Layer Sizes Discrete 100 1 300
Alpha Continuous 0.001 0.01 0.0001
Max. Iterations Discrete 200 10 1000
Tolerance Continuous 0.0001 0.00001 0.0001
Learning Rate Init. Continuous 0.001 0.0001 0.01
Epsilon Continuous le-08 le-9 1e-07

After the whole process depicted in Figure 4 is executed for both loops and
horizons (4 and 8 steps), the obtained models are trained with the selected
parameters and a dataset formed by the entire year 2015, and tested against the
dataset corresponding to the first trimester of 2016.

3 Experimental Results

One of the main advantages of using HS to tune a predictive model is the pos-
sibility of adjusting its continuous parameters without discretizing them. In our
model an automated exploratory search would require a discretization of four of
the parameters that are to be estimated by the HS algorithm. With our set of
parameters an exhaustive search would need a number of iterations given by

Mp Mo
I= (H DPRm> : ( 11 CPRm,> : (1)
m=1 m’/=1

where DPR,, is the number of possible values for the discrete parameter m €
{1,...,Mp}, and CPR,, is the number of discretization steps for the contin-
uous parameter m’ € {1,..., M}, with Mp and M¢ denoting the number of
discrete and continuous parameters, respectively. In this case, only evaluating
the combinations of discrete variables would require more than 26 million of it-
erations, each requiring an average of 2 minute to be executed. HS, instead, has
produced a result in less than three days.

Beyond the above gains in terms of computational effort, the tuning achieved
by HS has provided improved performance results over the baseline configura-
tion. Figure 5 shows scatter plots of both loops with both temporal horizons,
and R? metric obtained for each dataset by using default parameters for the
MLP and window size. In both loops, two hour horizon produces less accurate
predictions (less fit to the line), and also, loop B, in a residential area, produces
better overall performance, as a result of traffic stability there (figures 1 and 2).
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Fig. 5. Performance of the default MLP for both loops and temporal horizons.

Table 3. Optimized solution vectors for each loop and horizon

Loop Horizon Depth H. L. Size Alpha Max. Iter. Tolerance L.R. Init. Epsilon

A 4 35 285 2.96e-4 647 5.46e-5 4.94e-4  5.01e-9
A 8 42 160 9.25e-4 719 4.59e-5 5.26e-4  8.4e-8
B 4 40 262 3.67e-4 828 3.24e-5 8.54e-4  2.07e-8
B 8 45 81 6.84e-5 641 3.4e-5 3.4e-3  4.84e-8

After evolutionary search for optimal parameters, the algorithm has pro-
duced solution vectors presented in Table 3, which give rise to the predictive
performance plots depicted in Figure 6. All cases achieve an increment in R2
metric, more noticeable in the 8-step prediction with almost 27% and 25% of
R? performance relative gains. Due to their better performance with the default
configuration, the improvement experienced by the MLP models is less signifi-
cant — yet still notorious — in the case with 4-step horizon prediction. Window
size is considerably larger than initially estimated, with up to 42 steps — 10.5
hours — for the 8-step prediction in location A. This means that a forecast for
a certain timestamp is based in values up to 12.5 hours before, which according
to Figure 1 will always include values from both top and bottom ends of the
curve. This result unveils that data are stable along days and that, taken the
same range, the 42 steps that predict a value on e.g. a Saturday are similarly
good to forecast the same timestamp value on a Monday.
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Fig. 6. Performance of optimized multilayer perceptron on both loops with both tem-

poral horizons.

Scatter plots are also helpful to visualize how predictions approach their
exact values, specially for location B. Loop A, being placed in a very active zone



of Madrid, produces more outliers which are difficult to predict, especially in
the right part of the graphs where high traffic flow observed values are predicted
lower. Indeed the regressor is unable to forecast a traffic peak flow of 3500 vehicles
per hour, probably on account of an incident in the road at hand. All in all, these
results buttress the need for an optimization wrapper when building a traffic
forecasting model so as to configure it optimally.

4 Conclusions and Future Work

Prediction horizons greater than 1 hour are rarely explored in literature, be-
ing usually inefficient in urban areas as there are multiple immediate factors
that influence traffic, ultimately making predictions useless. Nonetheless, this
experiment has shown that in the absence of extraordinary circumstances, good
prediction scores are attainable for longer-term predictions when the window
sizes and algorithms are optimized. In this manuscript real traffic data in two
different locations of Madrid (Spain) have been used to prove that the HS solver
can efficiently optimize the parameters of a neural network and simultaneously
select the depth of the input data to the model. This method allows for the
automation of the tuning process of the algorithm, improving its overall perfor-
mance in terms of computational complexity and predictive accuracy.

This work paves the way towards multi-location forecast. Network-wide traf-
fic forecasting methods are gaining momentum, specially in urban environments.
Part of the vehicles passing over one loop are likely to have passed through sur-
rounding loops, thus the measurements taken in one loop might influence their
neighboring loops. Without detailed origin-destination matrices, estimating this
influence is an arduous task. The experiment presented in this paper can be
extended to a multi-loop problem, where instances of the dataset are formed by
observations of different loops, and the windows sizes of each loop are optimized.
This extended implementation is expected to bring better performance levels,
but also to unveil influence areas of each magnetic loop over the whole city.
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