
A Novel Grouping Harmony Search Algorithm
for Clustering Problems

Itziar Landa-Torres1, Diana Manjarres1, Sergio Gil-López1,
Javier Del Ser1,2,3, and Sancho Salcedo-Sanz4

1 TECNALIA, E-48160 Derio, Spain,
{itziar.landa,diana.manjarres,sergio.gil,javier.delser}@tecnalia.com

2 University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
{javier.delser}@ehu.eus

3 Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
4 Universidad de Alcalá, E-28871 Alcalá de Henares, Spain,

sancho.salcedo@uah.es

Abstract The problem of partitioning a data set into disjoint groups or
clusters of related items plays a key role in data analytics, in particular
when the information retrieval becomes crucial for further data analysis.
In this context, clustering approaches aim at obtaining a good parti-
tion of the data based on multiple criteria. One of the most challenging
aspects of clustering techniques is the inference of the optimal number
of clusters. In this regard, a number of clustering methods from the
literature assume that the number of clusters is known a priori and sub-
sequently assign instances to clusters based on distance, density or any
other criterion. This paper proposes to override any prior assumption on
the number of clusters or groups in the data at hand by hybridizing the
grouping encoding strategy and the Harmony Search (HS) algorithm.
The resulting hybrid approach optimally infers the number of clusters
by means of the tailored design of the HS operators, which estimates
this important structural clustering parameter as an implicit byproduct
of the instance-to-cluster mapping performed by the algorithm. Apart
from inferring the optimal number of clusters, simulation results ver-
ify that the proposed scheme achieves a better performance than other
näıve clustering techniques in synthetic scenarios and widely known data
repositories.

Keywords: Clustering, Grouping Encoding, Harmony Search

1 Introduction

Clustering is an important subgroup of unsupervised learning technique that
involves grouping data objects into groups or clusters, which may be disjoint
(crisp clustering) or overlap among each other (fuzzy clustering) [1]. A loose
definition of clustering could be casted as the process of classifying unlabeled
objects into groups in such a way that the members within a determinate clus-
ter (or group) are similar to each other under a given measure of similarity. In



essence, clustering aims at grouping an input set of samples into a finite number
of clusters using only the information contained in such samples. The so-called
samples (also denoted in the related literature as observations or instances) are
normally modeled as numerical vectors whose items (features) represent numer-
ical information to be used in the similarity measure. Mathematically, given a
feature space U , and if X .

= {X1, . . . ,XN} denotes a set of N samples in such
an space, the challenge of clustering problems lies in finding an K-sized opti-
mal partition of X , i.e. X ∗ = {X ∗1, . . . ,X

∗
K} (with X ∗k

⋂
X ∗k′ = Ø ∀k 6= k′,⋃K

k=1 X
∗
k = X and X ∗k denoting the k -th partition of X ∗). This clustering ar-

rangement collects in the same cluster samples that are similar to each other as
measured by a given objective function f(X ∗), which can defined under different
similarity-based criteria.

Most of the clustering techniques in the literature can be divided into two
general classes: hierarchical [2] and partitional [3]. The first class corresponds
to those methods that create a hierarchical decomposition of the dataset under
study. They can be agglomerative, when they start the clustering process with
each sample on a separate cluster and successively combine clusters; or divisive,
if they begin with all the patterns in a single cluster and perform this partition.
By contrast, partitional algorithms obtain a single partition of the data instead
of a hierarchy, i.e. they begin with a initial partition that is iteratively refined
in order to obtain the final solution.

Interestingly under the scope of this manuscript, clustering algorithms can
be also sorted depending on the deterministic or stochastic nature of the un-
derlying algorithm: as such, deterministic approaches are not controlled by any
probabilistic process, hence the instance-to-cluster mapping is fixed whenever
the parameters of the algorithm and the dataset being clustered do not vary
along time. On the other hand, stochastic clustering models are governed by
probability-based processes so that this randomness may help the search process
escape from local optima, at the cost of a certain degree of variability imposed
on the instance-to-cluster mapping even when the input data does not vary. It
is also worth mentioning other clustering techniques that rely on other criteria
with stochastic and deterministic ingredients in their algorithmic core, such as
Tabu Search [4], neural networks [5] and kernel spaces [6].

In this paper we focus on stochastic clustering models ruled by meta-heuristic
solvers, in particular those incorporating the so-called Harmony Search (HS) al-
gorithm as their constituent heuristic engine. The authors in [7] present a frame-
work for simultaneous feature selection and clustering using the HS algorithm,
whereas in [8] a centralized cluster-based protocol based on HS is proposed to
minimize the intra-cluster distance and thus optimize the energy consumption
of wireless networks. The performance of HS is compared to that of conventional
clustering techniques in [9]. Despite the massive upsurge of different clustering
techniques along the years, to the authors’ knowledge grouping-encoded algo-
rithms have not been tested in clustering problems. Intuitively, the grouping
algorithm should perform well when applied to clustering problems, since it is
originally conceived and well-adapted to manage groups of items [10]. This work



takes a step further by adapting a grouping-encoded HS to accommodate a
varying number of groups (clusters), which is estimated along the search process
undertaken by the HS operators. This novel ingredient is deemed of paramount
importance for practical clustering scenarios where traditional tools in this re-
gard (e.g. the Elbow method) have been proven not to be efficient nor effective
in most cases.

2 Proposed Approach

The Grouping Harmony Search Algorithm for Clustering (GHSC) proposed in
this paper adopts the classical grouping encoding first contributed by Falkenauer
in [10] and recently implemented in [12]. This variable-length grouping encoding
is carried out by splitting each candidate vector s handled by the heuristic solver
into two parts, i.e. s = [sx|sy]: the first part, sx, is the assignment part, which
consists of N integer indices with values drawn from the set {1, . . . , ky} with
ky denoting the length of the second part of the solution. This part establishes
to which cluster is assigned each sample. The second part sy of the encoded
solution (group part) maintains a list of tags associated to each of the clusters
of the solution. It is composed by a ky-length vector of integer indices from the
set {1, . . . ,K}, which serves as a indexing reference for the assignment part.
Therefore, the length of sx is fixed and equal to N for a given problem, whereas
the length of the group part is not fixed and may vary among the solutions
handled by the search process. The underlying heuristic solver searches for the
best length 1 ≤ ky ≤ K of the group part in terms of an objective function.
Following this notation, a solution for a clustering problem with N = 10 samples
and ky = 4 clusters could be represented as [3 2 2 4 1 3 1 2 3 4 | 1 2 3 4] in which,
according to the notation introduced in Section 1, the partition X ∗ would be
X ∗1 = {X5,X7}, X ∗2 = {X2,X3,X8}, X ∗3 = {X1,X6,X9} and X ∗3 = {X4,X10}.

2.1 Redundancy of the Clustering Encoding

As often stated in related contributions, most solution encoding strategies pro-
posed to represent groups suffer from redundancies [13,14]. This section will
elaborate on how to properly design a cluster encoding that mitigates this re-
dundancy by ensuring that a clustering arrangement cannot be represented by
more than one encoded individual. To this end, in the following set of encoded
solutions (with colors compounding the group part for clarity),

[1 2 3 2 3 1 2 1 3 | G R Y],
[1 3 2 3 2 1 3 1 2 | G Y R],
[3 1 2 1 2 3 1 3 2 | R Y G],
[2 1 3 1 3 2 1 2 3 | R G Y],
[2 3 1 3 1 2 3 2 1 | Y G R],
[3 2 1 2 1 3 2 3 1 | Y R G],

(1)

it can be noted that all the represented clustering arrangements are equal: ele-
ments {X1,X6,X8} always belong to cluster G (green), {X2,X4,X7} to cluster



R (red) and {X3,X5,X9} to Y (yellow). The proposal made recently by the
authors in [15] proposes to sort the group part according to a pre-established
criterion. In this particular case, for example, the colors can be listed according
to its wavelength λ (λR = 618, λG = 497 and λY = 570 nanometers). As a
result, the 6 individuals would be encoded as [1 3 2 3 2 1 3 1 2 | G Y R].

This being said, the proposal of this work is to sort the indices of the clusters
in order of appearance along the assignment part, in such a way that the 6
equivalent solutions in (1) are encoded as [1 2 3 2 3 1 2 1 3 | 1 2 3]. This
encoding reduces the solution space of the problem, as it implies that the first
position in the solution vector will always be a 1 and higher indexes will be less
likely to appear. Additionally, the group part of the harmony is not needed, as
all the information from the solution can be extracted from the assignment part;
it determines each of the samples to which cluster is assigned and the number
of clusters ky can be deduced from the maximum value in the assignment part,
i.e. ky = max sx. As a counterpoint the proposed solution encoding requires
several modifications in the improvisation operators of the nominal Harmony
Search algorithm, which is the heuristic engine selected to evolve this numerical
representation of clustering arrangements.

2.2 Proposed Grouping Harmony Search Algorithm for Clustering

The heuristic solver that lies at the core of the proposed clustering scheme is
Harmony Search (HS), a population-based meta-heuristic algorithm that since
its invention in [11] has rendered excellent results in the field of combinatorial
optimization [16]. It mimics the behavior of a music orchestra when aiming at
composing the most harmonious melody, as measured by aesthetic standards.
Just like jazz musicians improvise harmonies time after time searching for aes-
thetically pleasant melodies, the HS algorithm improves the fitness of the solu-
tion vector in an iterative fashion by applying several operators to a ϕ-sized set
of solutions, stored in the so-called Harmony Memory (HM). The flow diagram
of the HS algorithm can be summarized in four steps: (i) initialization of the
HM; (ii) improvisation of a new harmony; (iii) update of the HM with the new
generated harmony if its fitness improves that of the worst currently in the HM;
and (iv) repeat termination criterion (e.g. maximum number of iterations or fit-
ness stall) is satisfied. The improvisation procedure is controlled by two different
probabilistic operators, which are sequentially applied to each variable so as to
produce new improvised candidate solutions:

– The Harmony Memory Considering Rate, HMCR ∈ [0, 1], establishes the
probability that the new value for a certain variable is drawn uniformly
from the values of this same note in all the remaining melodies. Otherwise
(i.e. with a probability 1−HMCR), the value is chosen uniformly at random
from the alphabet of the variable. This latter case is commonly referred
to as random consideration. However, some works (e.g. [17]) implement the
random consideration as a third, separated probabilistic operator.



– The Pitch Adjusting Rate, PAR ∈ [0, 1], sets the probability that the new
value xnew for a given variable is drawn from its neighboring values in the
alphabet. To yield a PAR operator well-suited to the problem at hand, the
variable alphabet should be sorted according to the fitness to be optimized
so that subtle pitch adjustments do not imprint large changes in the value
of the fitness function.

START

END

HMCR

Initialization

Fitness
iterations< I?

Yes

No

Solution given by first

Local Search

search

solution in the HM

PAR RSR

best harmonies
Selection of

Improvisation

Fitness evaluation

evaluation

Local

Figure 1. General scheme of the proposed GHSC algorithm.

The flow diagram of the proposed GHSC algorithm is schematically shown
in Figure 1, and comprises 5 different steps:

A. Initialization, only executed at the first iteration: each of the ϕ candidate
solutions included in the HM is assigned a random value from the set {1, . . . ,K}
(number of clusters), from which the N entries of the sx part of the harmony
are drawn uniformly at random.

B. Improvisation, which generates new harmonies by operating on the sx
part of each solution. This process is sequentially applied to each entry of the
sx part of every harmony in the HM. Additionally, as done in [12,15,17], the
proposed improvisation procedure differs from the original HS implementation
by introducing a third parameter Random Selection Rate, RSR ∈ [0, 1], which
allows for an improved control of the tradeoff between the explorative and the
exploitative behavior of the algorithm. Thus, the improvisation of the proposed
GHSC is controlled by means of the HMCR, PAR and RSR operators. In light
of the results obtained in previous works [17], the parameters of the CHS are
modified so as to achieve a more effective information exchange and exploit
information related to the distances among samples:

– HMCR: the proposed method does not exchange information between har-
monies, but it leverages the information of the current partition X ∗ and at-
tempts to enhance it based on the proximity between samples. The HMCR
applied to a certain sample establishes the probability that such an instance
is assigned to another cluster by addressing the connections of the surround-
ing samples. These are the main steps:

1. All the samples in the network are listed in increasing order of the dis-
tances to the sample to which the HMCR is applied (from smallest to
largest). The first samples of this list are denoted as nearby candidates.



2. One out of the nearby candidates computed in the previous step is uni-
formly chosen at random, and the sample on which HMCR is applied is
assigned to the cluster of the chosen nearby candidate.

– PAR: as explained before, this process executes subtle adjustments in the
chosen harmony. In the proposed GHSC algorithm the PAR stands for the
probability that the actual sample is assigned to the cluster of its roughly
nearest sample is assigned to.

– RSR: as can be inferred from the above descriptions, none of the previ-
ous processes involves a variation in the number of clusters. The RSR will
therefore modify this number and, in order to ensure that the variation in
a harmony from one iteration to the next one is gradual, this parameter
is applied to each harmony, not to each note. The RSR has two operation
modes in which the possibility of increasing or decreasing the number of
clusters is given with 50% of probability each; in the first case, a new cluster
is created by splitting one of the actual solution (chosen randomly), and in
the second case, one randomly selected cluster is eliminated and its samples
are reassigned to the closest remaining cluster.

C. Local Search: this procedure is utilized to find local optima in the vicinity of
a certain harmony. Specifically, this method measures the metric obtained when
a determinate sample is assigned to all the other clusters in the solution and
selects the best cluster for each sample. The process is applied to the harmonies
under a certain probability and is sequentially repeated until all samples are
assigned to their most optimal cluster.

D. Fitness evaluation: at every iteration the quality evaluation of newly im-
provised harmonies is made based on an objective function. To this end two
widely known metrics will be utilized: the Davis-Bouldin (DB) index [18] and
the Silhouette coefficient [19]. The Davis-Bouldin index is defined for a given
cluster arrangement X ∗ and a similarity metric d(·, ·) as

DB(X ∗) .
=

1

K

K∑
k=1

max
k 6=k′

{∑
xεX∗k

d2(x, µk) +
∑
xεX∗

k′
d2(x, µk′)

d2(µk, µk′)

}
, (2)

with µk denoting the centroid of cluster X ∗k. This index favors solutions with
small distances between the samples assigned to the same cluster and large
distances among different clusters. It is important to note that compact and
well separated clusters entail low values of the DB index. Furthermore, this
score does not present a monotonic behavior with the number of clusters, so
it also allows validating the optimal number of clusters for a given data set.
On the other hand, the Silhouette coefficient is a commonly utilized measure
in clustering problems as it allows evaluating the quality not only of a single
solution, but also that of each of the arranged clusters. For the n-th sample Xn

assigned to cluster k(n), the Silhouette coefficient Υn is defined as

Υn
.
=

αk(n) − βk(n)
max{αk(n), βk(n)}

, (3)



where the parameter αk(n) represents the average distance between samples in
the cluster X ∗k(n) (i.e. the intra-cluster distance) to which the n-th sample be-
longs, whereas βk(n) stands for the minimum distance between the samples in
cluster X ∗k(n) to the remaining samples assigned to different clusters k′ 6= k(n).
For a cluster X ∗k, the silhouette coefficient is defined as the average of the Sil-
houette coefficients of its constituent samples. By using this coefficient good
partitions featuring compact and well-defined clusters while separated from each
other are obtained when its value gets close to its maximum value. The evalua-
tion of these metric functions and their comparison to the fitness of harmonies
from previous iterations permits to update the HM with the ϕ best harmonies.

E. Stop criterion: the search process stops when a fixed number of iterations
I is reached. This criterion has been established in order to provide a fair com-
parison between the algorithms compared in the later discussed experiments.

Besides the novel encoding solution for avoiding redundancies presented in
Section 2, two additional concepts are included in the proposed GHSC scheme.
The first one is related with the differential characteristic of the defined opera-
tors, thus no population-based knowledge is used and a new harmony is impro-
vised from its state at previous iteration. On the other hand, the improvisation
operators are defined on the basis of the structural relationship of the feature
space as provided by the Euclidean distances between samples and their closest
neighbors. Last but not least, the fact that only feasible solutions are improvised
during the iterative process guarantees that the computational complexity of the
algorithm is reduced.

3 Experiments and Results

In this section different experiments based in synthetic scenarios obtained from
two public repositories are presented. The proposed GHSC is compared to dif-
ferent clustering solutions presented in the literature:

1. The K-means algorithm [20], which can be regarded as one of the most popular
clustering algorithms. This approach requires the number of clusters K as an
input parameter, and it obtains a partition of the data into K clusters. It is
fairly well known that the K-means is simple and easy to use, which motivates
its widespread use in a large variety of problems. However, it is important to
remark that the K-means obtains poor results in problems where clusters have
different sizes, densities and/or many outliers. Additionally, this deterministic
algorithm has a strong dependency with the initialization of the centroids which
can make the algorithm get local optimum solutions. As last claim, the required
input of the number of clusters to be discovered by this clustering method limits
significantly its practicality. In these experiments, the well-known elbow method
is used to automatically set the number of clusters K.

2. Density Based Spatial Clustering of Applications with Noise (DBSCAN [21]),
which finds the number of clusters based on the assumption that the spatial den-
sity of samples belonging to a certain cluster should be higher than a predefined



density-reachability threshold parameter (ε). DBSCAN requires an additional
input parameter to set the minimum number of points Nmin required to form a
cluster. As points are assigned to clusters based on ε, Nmin and the distance be-
tween samples d(·, ·), this algorithm does not need to know a priori the number
of clusters to be sought. Additionally, DBSCAN is able to recognize clusters with
different shapes and sizes, and takes into account the notion of noise, in such a
way that outlier samples do not influence the algorithm’s performance. However,
it performs poorly in clustering problems over spaces with areas characterized
by significant density differences, and still requires two input parameters (ε and
Nmin) to be configured.

3. Grouping Genetic Algorithm (GGA) [12], which shares the same encoding
with the CHS with the exception that GGA also utilizes the sy part. In connec-
tion to the general scheme of the GHSC detailed in Section 2.2 the initialization
step (A), local search (C), metric evaluation (D) and stop criterium (E) are kept
the same in the GGA approach. However, the GGA operators follow the selec-
tion, crossover and mutation mechanisms featured by evolutionary algorithms:
first, a rank-based roulette wheel mechanism is adopted for the selection of the
individuals to be mated. It is important to note that this rank-based selection
mechanism is static, in the sense that probabilities of survival do not depend
on the generation, but on the position of the individual in the list. Likewise,
the crossover operator implemented in GGA is a modified version of the one
initially proposed by Falkenauer [10], adapted to the clustering problem to re-
move empty clusters and fulfill the redundancy-minimizing encoding strategy
explained in Section 2.1. Additionally, the GGA implements two different types
of mutation: 1) cluster splitting, by which a selected cluster is split in two, and
2) clusters merging, which gathers two randomly selected groups into one.

3.1 Results and Discussion

This section discusses results obtained by the above algorithms in datasets with
diverse characteristics in terms of density, size and/or shape, which eases the
understanding and assessment of the weaknesses and strong points of all the al-
gorithms within the benchmark. Besides these synthetic scenarios, experiments
with the widely utilized Iris and Wine databases are also presented. All reported
scores have been computed over 20 Monte Carlo experiments and I = 100 it-
erations. Forthcoming discussions are held on the average Rand Index (avg-RI)
values, a measure of similarity between two clustering arrangements that in this
case, is computed between the clustering produced by each algorithm and the
gold standard known for every dataset. The proposed GHSC approach is config-
ured with ϕ = 50, HMCR = 0.3, PAR = 0.1 and RSR = 0.2.

As anticipated above the discussion is focused on analyzing how GHSC per-
forms in several feature spaces with different cluster properties, namely:

– Spherical, which is composed by N = 300 samples drawn uniformly at
random from 8 independent Gaussian distributions with means µ1=(-1, 0),
µ2 = (-1, -1), µ3 = (-1, -3), µ4 = (3, -1), µ5 = (-1, 1), µ6 =(2, -2), µ7= (1,



2), µ8= (3, 1), statistical independence between dimensions and standard
deviation per dimension equal to 0.35.

– Structured, formed by N = 400 samples randomly generated using a Gaus-
sian distribution from 3 classes with probability p1 = 0.5, p2 = 0.33 and p3
= 0.17. Means for each class are µ1= (0, 2), µ2= (-1, -1) and µ3= (2, -1),
with the following covariance matrices:

Σ1 =

(
12 0

0.82 0

)
, Σ2 =

(
0.62 0
0.42 0

)
, Σ3 =

(
0.32 0
0.52 0

)
. (4)

– Unbalanced, which comprises N = 200 samples randomly generated using a
Gaussian distribution from 9 equiprobable classes, with means µ1= (1, -1),
µ2= (-1.5, 0), µ3= (0, 1), µ4= (-1, 1), µ5= (2, -1), µ6= (-2, -1), µ7= (-0.5, 2),
µ8= (-1, -1) and µ9= (1.5, 0), statistical independence between dimensions
and standard deviation per dimension equal to 0.2.

– Iris, which considers 3 classes formed by 50 samples each, totaling N = 150
instances. The challenge consists of differentiating among three different Iris
plants (Sentosa, Virginica and Versicolor) based on 4 characteristics of the
flowers: length and width of sepal and petal of the flower, all in centimeters.

– Wine, formed by 3 classes comprising 59, 41 and 78 samples each (N = 178
samples). These samples represent classes of wine from different regions of
Italy that are defined by 13 analyzed chemical properties of the wines.

Table 1. Comparison of the results obtained by the proposed GHSC algorithm and
GGA with DB and Υ index, DBSCAN and K-means algorithms in the considered
clustering problems. Best scores are highlighted in bold.

Algorithm
Spherical Structured Unbalanced Iris Wine

K avg-RI K avg-RI K avg-RI K avg-RI K avg-RI

K-means 9 0.949 4 0.875 3 0.780 3 0.880 3 0.702
DBSCAN 7 0.955 1 0.376 8 0.395 2 0.777 2 0.349

GGA (DB) 8 0.981 3 0.917 9 1.000 3 0.873 3 0.731
GGA (Υ ) 7 0.957 3 0.951 9 0.993 3 0.899 3 0.722

GHSC (DB) 8 0.994 3 0.942 9 1.000 3 0.901 3 0.739
GHSC (Υ ) 8 0.995 3 0.965 9 0.976 3 0.903 3 0.733

Table 1 summarizes the results obtained by the algorithms over the con-
sidered datasets. Results of the proposed GHSC and GGA are calculated by
using the Davies-Bouldin (DB) index and the Silhouette (Υ ) coefficient as their
fitness function. It is important to recall that scores are given in terms of the
Rand Index, computed by assuming that the best data partition is the one corre-
sponding to the original classes (distributions) of the dataset at hand. Focusing
on the Spherical dataset, the solution provided by GHSC improves on average
the best results obtained with the GGA, DBSCAN and K-means by 1.4%, 4%
and 4.5%, respectively. Solutions obtained with the DB index with GGA and
GHSC are similar to each other (just 1.3% in favour of GHSC), whereas this
gap widens an additional 4% when utilizing the Silhouette index Υ . This slight



margin improvement must be assessed jointly with the fact that just GGA (DB)
and both GHSC proposals manage to infer the correct number of clusters within
the data. Finally, when comparing the best approaches (GGA and GHSC), the
latter attains the best results regardless the index utilized (DB or Υ ).

In the structured case the best result is obtained by GHSC with Υ index
as its fitness function. It is interesting to notice the poor result obtained by the
DBSCAN approach. In addition, neither K-means nor DBSCAN determine the
actual number of clusters given by the statistical distributions used for generating
this dataset. When evaluating the DB and Υ indexes, the latter scores better
average results for both GGA and GHSC, from which it is concluded that this
index adapts better to non-compact clusters.

When it comes to the Unbalanced dataset both GHSC and GGA with the
DB index are able to split the cluster space according to the distributions from
which instances were produced (avg-RI equal to 1.000). The CHS driven by the
Υ coefficient as its fitness function also attains a perfect cluster arrangement.
In this case, K-means underestimates the number of clusters and ultimately
produces bad performance scores. From these experiments two conclusions can
be drawn: 1) meta-heuristic approaches are a good alternative to optimally detect
the number of clusters; and 2) the DB index outperforms Υ , i.e. the best approach
when dealing with non-overlapping cluster spaces is to balance inter-cluster and
intra-cluster distances (as done by the DB index) instead of focusing on the
cluster dispersion targeted by the Υ index.

For the Iris dataset the best result is given by GHSC with Υ index. Never-
theless, both GGA and K-means obtain good solutions, slightly worse (1%-3%)
than the GHSC with the DB index, but better than the solution provided by
GGA with the DB index. The DBSCAN approach, though, does not provide an
accurate solution for this experiment. This dataset is composed by one compact,
well-defined cluster (suitable for the DB index) and two more disperse additional
groups (appropriate for the Υ index). There lies the rationale why both indexes
attain similar scores for the proposed GHSC method. Finally, a same line of
reasoning can be taken for the Wine setup: the GHSC approach with the DB
index scores best for this dataset outperforming GGA, K-means and DBSCAN.
From this discussion an essential conclusion can be obtained: in general all meta-
heuristic approaches are able to determine optimally the number of clusters and
outperform traditional clustering schemes, with the proposed GHSC technique
as the prevailing option in the benchmark.

4 Concluding Remarks

In light of the obtained results the most straightforward conclusions point out
that the K-means algorithm is likely to fall in local optimums and is mostly useful
for problems where clusters have compact spherical shapes of uniform sizes and
densities. On the other hand, DBSCAN is not able to differentiate accurately
overlapped clusters. However, both GGA [12] and the proposed GHSC have
proven to optimally infer the number of clusters and the partitions, being the



latter slightly better than the former. One of the improvements provided by
GHSC when compared to other algorithms from the literature is the inference of
the number of clusters. Unlike other algorithms that require a dedicated step to
this purpose or further information regarding the dataset at han, the proposed
algorithm is able to determine both the optimal partitioning of the samples and
the number of clusters for each dataset embedded within the search process.
The algorithm begins with a number of randomly chosen clusters, and converges
towards the optimum number of groups using a measure of clustering quality as
the objective function to optimize.

In this context, the measures utilized for the experimental part of this work –
namely, the DB index and the Silhouette index – focus on establishing compact
clusters with delimited shapes and no overlap. As such, the DB index measures
the average similarity between each cluster and the one that most resembles it
based on the intra/inter cluster distance ratio. The Silhouette index is based
on the concepts of average scattering for clustering and the total separation
among clusters, which also reflect the compactness of clusters. Apart from these
commonalities between both indexes, the first one works better with overlapped
clusters and in general is more stable for all kind of data sets. Apart from failing
with overlapped clusters, the related literature (see e.g. [22,23,24] and references
therein) has often concluded that the DB index attains lower values in general
cluster spaces than the Silhouette index. Although the study presented in this pa-
per for testing the performance of GHSC is a small representation of all existing
techniques and types of datasets, the conclusions drawn in this reduced exper-
imental setup are congruent with those by previous references and span their
applicability over the meta-heuristic field. Future developments will gravitate on
the application of GHSC to real clustering problems, the use of alternative coef-
ficients as an objective function for the heuristic search and the implementation
of this algorithm in massively parallel Big Data computing architectures.

Acknowledgments

This work has been supported in part by the Basque Government through the
ELKARTEK program (ref. KK-2015/0000080).

References

1. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural
Networks 16(3), 645–678 (2005)

2. Johnson, S. C.: Hierarchical Clustering Schemes. Psychometrika 32(3), 241–254
(1967)

3. Davidson, I., Wagstaff, K. L., Basu, S.: Measuring Constraint-Set Utility for Par-
titional Clustering Algorithm. Springer Lecture Notes in Computer Science 4213,
115–126 (2006)

4. Al-Shultan, K. S.: A Tabu Search Approach to the Clustering Problem. Pattern
Recognition 28(9), 1443–1451 (1995)



5. Du, K. L.: Clustering: A Neural Network Approach. Neural Networks 23, 89–107,
(2010)

6. Dhillon, I. S., Guan, Y., Kulis, B.: Kernel K-means: Spectral Clustering and Nor-
malized Cuts. ACM SIGKDD, 551–556 (2004)

7. Sarvari, H., Khairdoost, N., Fetanat, A.: Harmony Search Algorithm for Simultane-
ous Clustering and Feature Selection. International Conference of Soft Computing
and Pattern Recognition, 202–207 (2010)

8. Hoang, D. C., Kumar, R.: A Robust Harmony Search Algorithm Based Clustering
Protocol for Wireless Sensor Network. IEEE International Conference on Commu-
nications, 1–5 (2010)

9. Senthilnath, J., Kulkarni, S., Raghuram, D. R., Sudhindra, M., Omkar, S. N.: A
Novel Harmony-Search Approach for Clustering Problems. Int. J. Swarm Intelli-
gence 2(1) (2016)

10. Falkenauer, E.: A New Representation and Operators for Genetic Algorithms Ap-
plied to Grouping Problems. Evolutionary Computation, 123–144 (1994)

11. Geem, Z. W., Kim, J.-H., Loganathan, G. V.: A New Heuristic Optimization Al-
gorithm: Harmony Search. Simulation 76(2), 60–68 (2001)

12. Agust́ın-Blas, L.E., Salcedo-Sanz, S., Jiménez-Fernández, S., Carro-Calvo, L., Del
Ser J. and Portilla-Figueras, J.A.: A New Grouping Genetic Algorithm for Clus-
tering Problems. Expert Systems with Applications 39(10), 9695–9703 (2012)

13. Falkenauer, E.: A Hybrid Grouping Genetic Algorithm for Bin Packing. Journal
of Heuristics 2(1), 5–30 (1996)

14. Falkenauer, E.: A Genetic Algorithm for Bin Packing and Line Balancing. IEEE
International Conference on Robotics and Automation 2, 1186–1192 (1992)

15. Landa-Torres, I. , Manjarrés, D., Salcedo-Sanz, S., Del Ser, J., Gil-López, S.: A
Multiobjective Grouping Harmony Search Algorithm for the Optimal Distribution
of 24-hour Medical Emergency Units. Expert Systems with Applications 40(6),
2343–2349 (2013)

16. Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-
Sanz, S., Geem, Z. W.: A Survey on Applications of the Harmony Search Algorithm.
Engineering Applications of Artificial Intelligence 26(8), 1818–1831 (2013)

17. Landa-Torres, I., Del Ser, J., Salcedo-Sanz, S., Gil-López, S., Portilla-Figueras, J.
A., Alonso-Garrido, O.: A Comparative Study of Two Hybrid Grouping Evolution-
ary Techniques for the Capacitated p-Median Problem”. Computers & Operations
Research 39(9), 2214–2222 (2012)

18. Davies, D., Bouldin, D.: A Cluster Separation Measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1(2), 224–227 (1997)

19. Rousseeuw, P.: Silhouettes: A Graphical Aid to the Interpretation and Validation
of Cluster Analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

20. McQueen, J.: Some Methods for Classification and Analysis of Multivariate Ob-
servations. Berkeley Symposium on Mathematics and Statistics, 281–297 (1968)

21. Ester, M., Kriegel, H. P., Sander, J.: A Density-based Algorithm for Discover-
ing Clusters in Large Spatial Data Bases with Noise. International Conference on
Knowledge Discovery and Data Mining, 226–231 (1996)

22. Rendón, E., Abundez, I. M., Gutierrez, C., Zagal, S. D., Arizmendi, A., Quiroz,
E. M., Arzate, H. E.: A Comparison of Internal and External Cluster Validation
Indexes. American Conference on Applied Mathematics, 158–163 (2011)

23. Guerra, L., Robles, V., Bielza, C., Larraaga, P.: A Comparison of Cluster Quality
Indices using Outliers and Noise. Intelligent Data Analysis 16, 703–715 (2012)

24. Bandyopadhyay, S., Saha, S.: Unsupervised Classification: Similarity Measures,
Classical and Metaheuristic Approaches, and Applications. Springer (2013)


