Skip to main content

Modeling the Avian Influenza H5N1 Virus Infection in Human and Analyzing Its Evolution

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 699))

Abstract

Here, after identifying the HPAI H5N1 gene data corresponding to the sites of HPAI H5N1 outbreaks in poultry and wild birds, the outbreak locations were set as the sources of human infection and a patch-based SEIR Cellular Automata (CA) epidemic model was run to simulate human responses to the HPAI H5N1 virus. HPAI H5N1 viruses from poultry and wild birds that were capable of infecting humans were identified and, through reconstruction of the phylogenetic trees with estimation of the evolutionary distances, the evolution of the HPAI H5N1 virus capable of infecting humans transmitted through poultry and wild birds was analyzed. HPAI H5N1 transmission between poultry and humans in China was modeled in different human population density scenarios from 2004–2009. The results showed that different human density distributions had little effect on the number of human cases of HPAI H5N1 and that poultry was the main source of infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ku, A., Chan, L.: The first case of H5N1 avian influenza infection in a human with complications of adult respiratory distress syndrome and Reye’s syndrome. J. Paediatr. Child Health 35, 207–209 (1999)

    Article  Google Scholar 

  2. World Health Organization. http://www.who.int/

  3. Watanabe, Y., Ibrahim, M.S., Suzuki, Y., Ikuta, K.: The changing nature of avian influenza A virus (H5N1). Trends Microbiol. 20(1), 11–20 (2012)

    Article  Google Scholar 

  4. Shu, Y., Yu, H., Li, D.: Lethal avian influenza A (H5N1) infection in a pregnant woman in Anhui Province, China. N. Engl. J. Med. 354, 1421–1422 (2006)

    Article  Google Scholar 

  5. Wang, H., Feng, Z., Shu, Y., Yu, H., Zhou, L., Zu, R., Huai, Y., Dong, J., Bao, C., Wen, L., Wang, H., Yang, P., Zhao, W., Dong, L., Zhou, M., Liao, Q., Yang, H., Wang, M., Lu, X., Shi, Z., Wang, W., Gu, L., Zhu, F., Li, Q., Yin, W., Yang, W., Li, D., Uyeki, T.M., Wang, Y.: Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet 371, 1427–1434 (2008)

    Article  Google Scholar 

  6. Neumann, G., Chen, H., Gao, G.F., Shu, Y., Kawaoka, Y.: H5N1 influenza viruses: outbreaks and biological properties. Cell Res. 20, 51–61 (2010)

    Article  Google Scholar 

  7. Yang, Y., Halloran, M.E., Sugimoto, J.D., Longini Jr., I.M.: Detecting human-to-human transmission of avian influenza A (H5N1). Emerg. Infect. Dis. 13(9), 1348–1353 (2007)

    Article  Google Scholar 

  8. Iwami, S., Takeuchi, Y., Liu, X.: Avian flu pandemic: can we prevent it? J. Theor. Biol. 257, 181–190 (2009)

    Article  MathSciNet  Google Scholar 

  9. Horimoto, T., Kawaoka, Y.: Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3, 591–600 (2005)

    Article  Google Scholar 

  10. Liu, J., Xiao, H., Lei, F., Zhu, Q., Qin, K., Zhang, X.W., Zhang, X.L., Zhao, D., Wang, G., Feng, Y., Ma, J., Liu, W., Wang, J., Gao, G.F.: Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309, 1206 (2005)

    Article  Google Scholar 

  11. Keawcharoen, J., Oraveerakul, K., Kuiken, T., Fouchier, R.A.M., Amonsin, A., Payungporn, S., Noppornpanth, S.: Avian influenza H5N1 in tigers and leopards. Emerg. Infect. Dis. 10, 2189–2191 (2004)

    Article  Google Scholar 

  12. de Jong, M.D., Hien, T.T.: Avian influenza A (H5N1). J. Clin. Virol. 35, 2–13 (2006)

    Article  Google Scholar 

  13. Roberton, S.I., Bell, D.J., Smith, G.J.D., Nicholls, J.M., Chan, K.H., Nguyen, D.T., Tran, P.Q., Streicher, U., Poon, L.L.M., Chen, H., Horby, P., Guardo, M., Guan, Y., Peiris, J.S.M.: Avian influenza H5N1 in viverrids: implications for wildlife health and conservation. Proc. Biol. Sci. 273, 1729–1732 (2006)

    Article  Google Scholar 

  14. Abdel-Moneim, A.S., Abdel-Ghany, A.E., Shany, S.A.S.: Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkey. J. Biomed. Sci. 17, 25 (2000)

    Article  Google Scholar 

  15. Watanabe, Y., Ibrahim, M.S., Ellakany, H.F., Kawashita, N., Mizuike, R., Hiramatsu, H., Sriwilaijaroen, N., Takagi, T., Suzuki, Y., Ikuta, K.: Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog. 7, e1002068 (2011)

    Article  Google Scholar 

  16. Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y.: Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992)

    Google Scholar 

  17. Taubenberger, J.K., Reid, A.H., Lourens, R.M., Wang, R., Jin, G., Fanning, T.G.: Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005)

    Article  Google Scholar 

  18. Smith, D.J.: Predictability and preparedness in influenza control. Science 312, 392–394 (2006)

    Article  Google Scholar 

  19. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207, 1–25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, K.I., Lin, Z., Zhang, L.: Avian-human influenza epidemic model with diffusion. Nonlinear Anal.: Real World Appl. 11, 313–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Agarwal, M., Verma, V.: An avian-human influenza epidemic model with vaccination. J. Appl. Sci. 5(6), 451–458 (2010)

    Google Scholar 

  22. Samanta, G.P.: Permanence and extinction for anonautonomous avian-human influenza epidemic model with distributed time delay. Math. Comput. Model. 52, 1794–1811 (2010)

    Article  MATH  Google Scholar 

  23. Lucchetti, J., Roy, M., Martcheva, M.: An avian influenza model and its fit to human avian influenza cases. In: Tchuenche, J.M., Mukandavire, Z. (eds.) Advances in Disease Epidemiology, pp. 1–30. Nova Science Publishers, New York (2009)

    Google Scholar 

  24. Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A.: Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88 (2006)

    Article  Google Scholar 

  25. Vibound, C., Bjørnstad, O.N., Smith, D.L., Simonsen, L., Miller, M.A., Grenfell, B.T.: Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451 (2006)

    Article  Google Scholar 

  26. Ghedin, E., Sengamalay, N.A., Shumway, M., Zaborsky, J., Feldblyum, T., Subbu, V., Spiro, D.J., Sitz, J., Koo, H., Bolotov, P., Dernovoy, D., Tatusova, T., Bao, Y., George, K.S., Taylor, J., Lipman, D.J., Fraser, C.M., Taubenberger, J.K., Salzberg, S.L.: Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437, 1162–1166 (2005)

    Article  Google Scholar 

  27. Nelson, M.I., Holmes, E.C.: The evolution of epidemic influenza. Nat. Rev. 8, 196–205 (2007)

    Article  Google Scholar 

  28. Ferguson, N.M., Galvani, A.P., Bush, R.M.: Ecological and immunological determinants of influenza evolution. Nature 422, 428–433 (2003)

    Article  Google Scholar 

  29. Koelle, K., Cobey, S., Grenfell, B., Pascual, M.: Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314, 1898–1903 (2006)

    Article  Google Scholar 

  30. Koelle, K., Khatri, P., Kamradt, M., Kepler, T.B.: A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. J. R. Soc. Interface 7, 1257–1274 (2010)

    Article  Google Scholar 

  31. Roche, B., Drake, J.M., Rohani, P.: An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinform. 12, 87 (2011)

    Article  Google Scholar 

  32. Martcheva, M.: An evolutionary model of influenza A with drift and shift. J. Biol. Dyn. 6(2), 299–332 (2011)

    Article  MathSciNet  Google Scholar 

  33. Ito, K., Igarashi, M., Miyazaki, Y., Murakami, T., Iida, S., Kida, H., Takada, A.: Gnarled-trunk evolutionary model of influenza A virus hemagglutinin. PLoS ONE 6(10), e25953 (2011)

    Article  Google Scholar 

  34. World Organization for Animal Health. http://www.oie.int/

  35. World Health Organization. http://www.who.int/influenza/human_animal_interface/avian_influenza/en/

  36. Data Sharing Infrastructure of Earth System Science. http://www.geodata.cn/

  37. Landscan Global Population Project. http://www.ornl.gov/sci/landscan/

  38. China Statistics Yearbook. http://www.tjcn.org/

  39. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/

  40. Wikipedia. http://zh.wikipedia.org/wiki

  41. van den Driessche, P.: Spatial structure: patch models. In: Brauer, F., van den Driessche, P., Wu, J. (eds.) Mathematical Epidemiology, pp. 179–189. Springer, Berlin (2008). (Chapt. 7)

    Chapter  Google Scholar 

  42. Sirakoulis, GCh., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 133, 209–223 (2000)

    Article  Google Scholar 

  43. Zhang, P., Atkinson, P.M.: Modelling the effect of urbanization on the transmission of an infectious disease. Math. Biosci. 211, 166–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nei, M., Kumar, S.: Phylogenetic trees. In: Nei, M., Kumar, S. (eds.) Molecular evolution and phylogenetics, pp. 73–86. Oxford University Press, New York (2000). (Chap. 5)

    Google Scholar 

  45. Li, S., Pearl, D.K., Doss, H.: Phylogenetic tree construction using Markov Chain Monte Carlo. J. Am. Stat. Assoc. 95(450), 493–508 (2000)

    Article  Google Scholar 

  46. Yang, Z.: Phylogenetic analysis using parsimony and likelihood methods. J. Mol. Evol. 42, 294–307 (1996)

    Article  Google Scholar 

  47. Saitou, N.: Property and efficiency of the maximum likelihood method for molecular phylogeny. J. Mol. Evol. 27, 261–273 (1988)

    Article  Google Scholar 

  48. Attwood, T.K., Parry-Smith, D.J.: Multiple sequence alignment. In: Introduction to Bioinformatics. Addison Wesley Longman Limited, London (1999). (Chap. 7)

    Google Scholar 

  49. Nei, M., Kumar, S.: Evolutionary change of amino acid sequences. In: Nei, M., Kumar, S. (eds.) Molecular evolution and phylogenetics, pp. 17–32. Oxford University Press, New York (2000). (Chapt. 2)

    Google Scholar 

  50. WHO report. http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/

  51. O’Sullivan, D., Torrens, P.M.: Cellular models of urban systems. CASA Paper 22 (2000)

    Google Scholar 

  52. Small, M., Walker, D.M., Tse, C.K.: Scale-free distribution of avian influenza outbreaks. Phys. Rev. Lett. 99, 188702 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Zhang, P. (2017). Modeling the Avian Influenza H5N1 Virus Infection in Human and Analyzing Its Evolution. In: Yuan, H., Geng, J., Bian, F. (eds) Geo-Spatial Knowledge and Intelligence. GRMSE 2016. Communications in Computer and Information Science, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-10-3969-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3969-0_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3968-3

  • Online ISBN: 978-981-10-3969-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics