SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, Rhode Island, USA

Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA
Xindong Wu, University of Vermont, Burlington, Vermont, USA

Lakhmi C. Jain, University of South Australia, Adelaide, South Australia, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Ontario, Canada
Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA

V.S. Subrahmanian, University of Maryland, College Park, Maryland, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan

Bruno Siciliano, Universita di Napoli Federico II, Napoli, Italy

Sushil Jajodia, George Mason University, Fairfax, Virginia, USA

Newton Lee, Newton Lee Laboratories, LLC, Tujunga, California, USA

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Wei-Tek Tsai - Guangiu Qi

Combinatorial Testing
in Cloud Computing

@ Springer

Wei-Tek Tsai Guanqiu Qi

Arizona State University Arizona State University
Tempe, AZ Tempe, AZ

USA USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science

ISBN 978-981-10-4480-9 ISBN 978-981-10-4481-6 (eBook)

https://doi.org/10.1007/978-981-10-4481-6
Library of Congress Control Number: 2017955265

© The Author(s) 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Traditional testing faces significant complexity issues due to the increasing number
of data, paths, combinations, permutations, and so on. Various testing methods have
been proposed and used to improve the quality and reliability of software. As one
branch of software testing, combinatorial testing (CT) is one black-box testing
method to identify faults caused by the interaction of a few components. CT is
considered a hard problem due to its exponential complexity: A system with 30
choice items may need to explore 2°° combinations and this is time- and
effort-consuming.

Many approaches have been proposed in the last 40 years using various theo-
retical models or techniques such as Latin square, orthogonal array, covering array,
machine learning. In the past 20 years, the evolutionary solutions of combinatorial
testing, such as AETG, IPO, have been proposed to generate a small set of test cases
that achieves 100% test coverage. However, in spite of significant progress, it is still
difficult to apply CT for a system of moderate sizes such as 100 choice items. These
solutions mainly focus on test coverage and not much work on fault identification.

This book proposes a computational approach to address the CT problem;
instead of general purpose machine learning algorithms to learn from cases, it
explores the CT structure to eliminate combinations for consideration, and the
exploration can be done in a parallel manner, and the process can be done in a cloud
environment where parallel processing is a standard feature. This approach allows
performing CT for a system with size of 2*°, with 22" combinations to consider.
Thus, effectively, CT can run on a large system.

This book intends to propose a faulty location analysis solution of CT as well as
review existing CT solutions. Chapter 1 reviews existing combinatorial designs and
CT solutions of test case generation. Chapter 2 discusses CT practical application in
cloud computing and compares existing faulty location analysis solutions in CT.
Chapter 3 introduces adaptive reasoning (AR) algorithm in multi-tenancy
Software-as-a-Service (SaaS) system. In the next three chapters, it describes the
formal definitions of test algebra (TA), discusses the related optimizations of TA,
and simulates TA in cloud environment. The last three chapters propose an

vi Preface

integrated Testing-as-a-Service (TaaS) design with AR and TA, discuss the related
testing strategies, and simulate the proposed TaaS design to solve a large-scale CT
problem in cloud environment.

This book can serve as reference text for graduate students and researchers who
work in combinatorial testing area. It should also be interesting to those who work
in fault identification, fault location, and other related fields in testing. Practitioners
may be inspired by this book in testing plan design. Due to the limitation of our
knowledge, we could not provide more details in relationship between existing
faults and potential faults now. But our research moves forward in fault location
analysis step-by-step. You are welcome to contact us, if you have any comments
and suggestions.

This work is built on many outstanding CT work in the past, and their contri-
butions are greatly appreciated. Prof. Charles Colbourn of Arizona State University,
a leading expert on CT, was a co-author of some of research papers published. Prof.
Wenjun Wu of Beihang University provided the initial computing environment for
us to perform computational experiments, and our great friend Tony provided 40
large servers for us to perform CT experiments on a system of 2°° choice items. By
the way, the data generated by the 2°° is so large that it will take months just to
transfer data.

The editors at Springer, Celine Chang and Jane Li, are always helpful. We are
grateful to them for their constructive suggestions and patience. Finally, we are also
indebted to our family members who suffered through the writing of this work that
seems to last forever.

Beijing, China and San Jose, USA Wei-Tek Tsai
May 2017 Guangqiu Qi

Contents

1 Introduction 1
1.1 Software Testing 1
1.2 Cloud Testingt 2
1.3 Combinatorial Designs 3

1.3.1 Latin Square 3
1.3.2 Orthogonal Array. 3
1.3.3 Covering Array 4
1.4 Combinatorial Testing.ot 5
1.4.1 Covering Array for Testing 6
1.4.2 Automatic Efficient Test Generator 6
1.4.3 In-Parameter-Order 8
144 Genetic Algorithm 8
1.4.5 Backtracking Algorithm 9
1.4.6 Fault Detection 9
1.5 Structure of This Book 10
References 11

2 Combinatorial Testing in Cloud Computing 15
2.1 Combinatorial Testing in Cloud Computing 15
2.2 Improvements of Combinatorial Testing in Cloud Environment. .. 16
2.3 Faulty Location Analysis in Combinatorial Testing. 17

2.3.1 Fault Localization Based on Failure-Inducing

Combinations 17
2.3.2 Identifying Failure-Inducing Combinations in a

Combinatorial Test Set. 18
2.3.3 Faulty Interaction Identification via Constraint Solving

and Optimization, 19
2.3.4 Characterizing Failure-Causing Parameter Interactions

by Adaptive Testing 20

vii

viii

Contents
2.3.5 Comparisons of Existing Faulty Location Analysis
SOlUtionso 22
24 Related Work. 22
References 23
Adaptive Fault Detection In Multi-tenancy Saas Systems 25
3.1 Adaptive Testing Framework 25
3.1.1 Learning from Earlier Test Results 25
3.1.2 AR Algorithm Framework 28
3.1.3 Relationship Between Faults, Final-Faults, and
Candidate-Faults 29
3.2 Simulation of AR Algorithm 29
3.3 Incremental Testing to Allow New Components. 32
References 36
Test Algebra for Concurrent Combinatorial Testing 37
4.1 Test Algebra 37
4.1.1 Learning from Previous Test Results. 38
4.1.2 Changing Test Result Status. 40
4.1.3 Matrix Representation 40
4.1.4 Relationship Between Configuration and Its
Interactions 42
4.1.5 Merging Concurrent Testing Results 43
4.1.6 Distributive Rule 45
4.1.7 Incremental Development. 45
4.2 COonClUSION\ 46
AppendiX 46
Reference. 52
Concurrent Test Algebra Execution with Combinatorial
Testing 53
5.1 TA Analysis Framework 53
5.1.1 The Role of N in Concurrent Combinatorial Testing 58
5.1.2 Modified Testing Process 58
5.2 TA Analysis Algorithm. 59
5.3 TA Analysis Process and Related Considerations 60
5.3.1 Analysis Process 60
5.3.2 Adjustment in Analyzing 61
5.4 Test Database Design 62
54.1 Xand FTable Design 62
542 PTable Design 62
543 Nand UTable Design 63
5.5 Experiment. 63
56 ConClusion. 67

References 67

Contents ix

6 Test Algebra Execution in a Cloud Environment 69

6.1 TA Concurrent Execution and Analysis 69

6.1.1 TA Concurrent Execution. 69

6.1.2 NU Configuration. 71

6.1.3 NU Configuration Selection Algorithms............... 72

6.1.4 Analysis Process of NU and U Configurations 74

6.2 TAEXperimentsuiiuieiniimnnannen.. 76

6.2.1 TA MapReduce Experiment Flowchart 76

6.2.2 Different Configuration Numbers of TA Experiments. 76

6.2.3 Different Speedup Strategy for TA Experiments. 76

6.2.4 Different Fault Rates for TA Experiments 77

6.2.5 Explanation on Simulated Data. 79

6.2.6 Simulation with Different Clusters 79
6.2.7 Simulation using 37-node Cluster with Different

Map SIots 79

6.3 Conclusion. 81

Reference. 82

7 Adaptive Reasoning Algorithm with Automated Test Cases

Generation and Test Algebra in Saas System 83
7.1 Experimentation Using a MTA SaaS Sample 83
7.2 SaaS Testingt 86
7.3 SaaS Test Case Generation 88
7.4 Simulation and Analysis 92
7.4.1 Simulation of ARP Algorithm 92
7.4.2 Incremental Testing with Automatic Test Generation 94
7.4.3 Simulation Experiments of ARP+PTR 95
7.4.4 Analysis of the Strategy on Test Generation 96
7.4.5 TA Simulation in SaaS. 99
References 99
8 TaaS Design for Combinatorial Testing 101
8.1 TaaS Introduction. 101
8.2 TaaS Design with TAand AR. 102
83 TaaSasSaaS....... 105
83.1 GUIs. 107
832 Workflows L 107
833 Services 108
8.3.4 Runtime Composition, Execution and Scalability. 108

8.4 Experimental Results 110
8.5 Conclusion. 112

References 112

X Contents
9 Integrated Taas with Fault Detection and Test Algebra 115
9.1 Framework. 115
9.1.1 Imtegrated Process 115

9.1.2 Framework Mllustration 116

9.2 Experiments and Results 119
9.2.1 Experiment Setup 119

9.2.2 Experiment Results 122

0.23 Measurements 123

9.3 CONCIUSION\ 127

References 127

	Preface
	Contents

