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Abstract. In this paper, a novel feature selection approach for supervised inter-

val valued features is proposed. The proposed approach takes care of selecting 

the class specific features through interval K-Means clustering. The kernel of 

K-Means clustering algorithm is modified to adapt interval valued data. During 

training, a set of samples corresponding to a class is fed into the interval K-

Means clustering algorithm, which clusters features into K distinct clusters. 

Hence, there are K number of features corresponding to each class. Subsequent-

ly, corresponding to each class, the cluster representatives are chosen. This pro-

cedure is repeated for all the samples of remaining classes. During testing the 

feature indices correspond to each class are used for validating the given dataset 

through classification using suitable symbolic classifiers. For experimentation, 

four standard supervised interval datasets are used. The results show the superi-

ority of the proposed model when compared with the other existing state-of-the-

art feature selection methods. 

Keywords: Feature selection, Interval data, Symbolic similarity measure, Sym-
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1 Introduction 

In the current era of digital technology- pattern recognition plays a vital role in the 

development of cognition based systems. These systems quite naturally handle a huge 

amount of data. While handling such vast amount of data, the task of data processing 

has become curse to process. To overcome curse in data processing, the concept of 

feature selection is being adopted by researchers. Nowadays, feature selection has 

become a very trending topic in the field of machine learning and pattern recognition. 

Feature selection helps us to select the most relevant features from a given set of fea-

tures. The different feature selection techniques can be listed as: filter, wrapper, and 

embedded methods [1]. 

Generally, the existing conventional methods fail to perform feature selection on 

unconventional data like interval, multi-valued, modal, and categorical data. These 

data are also called in general symbolic data. The notion of symbolic data was 

emerged in the early 2000, which mainly concentrates in handling very realistic type 

of data for effective classification, clustering, and even regression for that matter [2]. 
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As it is a powerful tool in solving realistic problems, we thought of developing a fea-

ture selection model for any one of the modalities. In this regard, we have chosen with 

an interval valued data, due its strong nature in preserving the continuous streaming 

data in discrete form [2]. In this regard, we built a feature selection model for interval 

valued data in this work. 

In literature, works done on feature selection of interval valued data is very few 

compared to conventional feature selection methods. Ichino [3] had given only the 

theoretical interpretation of feature selection on interval valued based on the pretend-

ed simplicity algorithm which works in a Cartesian space. Bapu et. al., [4] proposed a 

two stage feature selection algorithm which can handle both interval as well multi-

valued data based on the Mutual Similarity Value proximity measure. But the method 

is restricted to unsupervised dataset. Lyamine et. al., [5] speak about the feature selec-

tion of interval valued data based on the concept of similarity margin computed be-

tween an interval sample and a class prototype. The similarity margin is computed 

using certain symbolic similarity measure. The authors have constructed basis for the 

similarity margin and then they worked out at the multi-variate weighting scheme. 

The weights guarantee with the number of subset features to be selected. The experi-

mentation is done on three standard benchmarking interval dataset and validated using 

LAMBA classifier. Recently, Chih-Ching et. al., [6] have come up with a feature 

selection model, where it adopts the framework of [5] for selecting the features. But, 

the authors have used different kernel viz., Gaussian kernel for measuring the similar-

ity between an interval sample and a class prototype. The authors also have given the 

experimentation and comparative analysis on only single interval valued dataset. 

Apart from the above mentioned works, no work can be seen on feature selection 

of interval valued data based on clustering in general, class specific features selection 

in particular. The class specific feature selection helps in improving the prediction 

accuracy as it selects features which are most relevant to the specific classes instead 

of selecting features relevant to all classes. With this motivational background, here in 

this paper, a feature selection model is proposed and validated on supervised interval 

datasets. 

The proposed feature selection model initially transforms the given supervised fea-

ture matrix and later divides the transformed matrix into several (equal to number of 

classes) interval feature sub-matrices. The transformed feature sub-matrices are then 

fed into interval K-means clustering algorithm. Thus, results with K clusters for each 

sub-matrix. Next, for every cluster, a cluster representative is computed that results 

with K number of representatives corresponding to each class. During testing, a single 

interval feature vector is considered for classification based on the class specific fea-

tures selected from the knowledgebase and they are validated using suitable symbolic 

classifiers. 

The major contributions of this paper are as follows: 

1. Proposal of a novel interval feature selection model based on class specific feature 

selection. 

2. Design of an interval K-Means clustering algorithm by incorporating interval simi-

larity kernel into conventional K-Means clustering. 



3. Conduction of an experimentation, to show that the proposed model outperforms 

the state-of-the art models. 

The organization of the paper is as follows: In section 2, the proposed model is 

well explained. The details of experimental setup, datasets and results are given in 

section 3. Section 4 presents a comparative analysis. Finally, section 5 concludes the 

paper. 

2 Proposed Model 

The proposed interval feature selection model comprises of various steps in both 

training and testing respectively. Pre-processing, Interval K-Means clustering, selec-

tion of cluster representatives (Feature Selection) are done at a former stage and selec-

tion of feature indices (pre-processing), and classification tasks are performed at a 

latter stage. The architecture of the proposed model is given in Figure 1. 
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Fig. 1. Architecture of the Proposed Model 

2.1 Pre-processing during training phase 

Let us consider a supervised interval feature matrix IFM, with N number of rows 

and d+1 number of columns. Each row corresponds to a sample and each column 

corresponds to a feature of type interval. Such a matrix is given by: IFM:       , 

   represents a sample and    represents a class label (         ). 

Each sample    is described by d interval features and is given by: 

      
    

      
       

    
      

    
        

    
    

where,   
        

   are the lower and upper limits of an interval respectively. 



The basic idea of the proposed model is to cluster the similar features. To accom-

plish this, a feature matrix should be transformed in such a way that the positions of 

samples become features and features become samples. That is, the rows of a feature 

matrix should correspond to features and the columns should correspond to samples. 

Now, we have a transposed feature matrix of dimension      . But, our main ob-

jective is to select class specific features. In this regard, we separated samples based 

on their class correspondence and obtain with a sub-matrix       of dimension 

       (  is the number of samples per class) corresponding to a particular class 𝐶  

         𝑚  𝑚               ). 

Further, the       is fed into interval K-Means clustering algorithm to obtain K 

clusters from each matrix, where   features are spread across K different clusters. The 

details of clustering procedure are given in next section. 

2.2 Interval K-Means Clustering 

In this section, details about the construction of an interval K-Means clustering al-

gorithm are given. 

As we know, conventional K-Means clustering is an instance of partitional cluster-

ing techniques. Initially, it fixes up with the number of clusters (K) and the centroid 

points. Then the algorithm uses one of the different kernels such as squared Euclide-

an/ city block/ cosine/ correlation/ Hamming distance to compute the proximity 

among the samples [7]. Later those samples which have greater affinity go to same 

cluster and samples with a little affinity go to different clusters. Then the new cen-

troids will be computed for each K clusters. The same procedure is repeated until 

certain convergence criteria are satisfied. The convergence criteria may be the maxi-

mum iterations or   difference. Usually, the above said procedures are followed in 

conventional K-Means clustering algorithm. But, in our work, as we are handling with 

interval valued data, a slight modification has been brought out at kernel level. The 

kernel used to compute the affinity among the samples is symbolic similarity measure 

[8] instead of the above said kernels. The symbolic similarity kernel (SSK) used in 

our work is given by: 
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object B (B to A) and are given by: 
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Fig. 2. Different instances of similarity computation between two intervals [4], (a)-(d): Over-

lapping cases, (e)-(f): Non-overlapping cases 

The symbolic similarity kernel used in this work is very realistic in nature, as it 

preserves the topological relationship between the two intervals. The illustration of 

different cases of topological relationships exist between two intervals are shown in 

Figure 2. 

The rest of the interval K-Means clustering follows the same procedure as conven-

tional K-Means clustering as explained above. 

2.3 Selection of Cluster Representative (Feature Selection) 

The K-clusters obtained from the class are considered here for selecting respective 

clusters’ representative. The procedure for selecting the cluster representatives is dis-

cussed below: 

Consider a cluster 𝐶   ∈ 𝐶                          , containing   number 

of features. A feature is said to be a cluster representative  𝐶    , then it must exhibit 

a maximum similarity to all the remaining features. In this regard, the similarity com-

putation among the features in a cluster 𝐶   results with a similarity matrix    , 

which is given by: 

    
 

           ∈                        

Where,            is given by equation (1). 

Further, the computation of average similarity value is given by: 
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Now, we have obtained with   average similarity values corresponding to cluster 

𝐶  . Thus 𝐶    is given by: 
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From equation 3, it is very clear that the feature (  ) which gives maximum      

value is considered as a cluster representative  𝐶     corresponding to cluster 𝐶  . 

Thus the above procedure is repeated for all the clusters corresponding to remaining 

classes. Now we have mxK such clusters representative  𝐶    𝐶      𝐶      . The 

feature indices of these cluster representatives are further used to select features from 

original interval feature matrices and archived the same in the knowledgebase for 

classification. The illustration of selection of cluster representatives (features selec-

tion) is shown in Figure 3. 

 

 

Fig. 3. Illustration of interval features selection using clustering: (a) Interval features (visual-

ized as points) are spread in two dimensional sample space, (b) Clusters obtained after applying 

interval K-Means clustering, (c) Red dots are the clusters representative selected based on the 

procedure explained in section 2.3, (d) Two red dots are further retained as the features of inter-

est. 

2.4 Pre-processing during testing phase 

Basically, our classification strategy is influenced from biometric verification, 

where, initially it identifies a class of the sample and then authenticates the claimed 

(a) (b) 

(c) (d) 



sample during verification. Similarly, in our work, initially a query sample is claimed 

as not only the member of a single class instead it is claimed to be as the member of 

all m different classes. While claiming the membership of all m classes, the (K) fea-

tures of a query sample are selected based on the feature indices preserved during 

training. Thus for classification, there are totally m different query instances (of a 

sample) entering into the symbolic classifiers. 

2.5 Symbolic Classifiers 

In this paper, as we are handling with interval type data, it is difficult to compatible 

with conventional classifiers such as K-NN (K-Nearest Neighbour), SVM (Support 

Vector Machines), Random Forest etc [9]. In this regard, we have recommended 

symbolic classifiers which handle interval type data successfully for classification. 

Here, we use two symbolic classifiers proposed in [10], and [11]. Henceforth, these 

two are called as C-1 and C-2 classifiers respectively. 

The classifier proposed in [10], operates directly on interval data and the similarity 

measure proposed by them is of interval type in nature, hence the computed similarity 

matrix is again a symbolic. Further, authors aggregate the obtained matrix using the 

concept of mutual similarity value (MSV) and obtain with the conventional symmet-

ric similarity matrix. Later on, the authors follow the nearest neighbour approach for 

classification. 

In [11], authors propose a symbolic classifier which mainly concentrates on nearest 

neighbour approach in classifying an unknown sample to a known class. In our work, 

a slight modification has been done on the similarity measure proposed by [11]. The 

slight modification of the above said similarity measure is done at feature level. As 

the similarity measure in [11], is capable of measuring the similarity of multi-interval 

valued data, but in our case, only single interval valued data is enough to measure the 

similarity between two objects. Hence, we have restricted the measure to only single 

interval valued data. 

Finally, we end up with 𝑚 different classification scores obtained for 𝑚 different 

classes. The classification of an unknown sample is labelled based on these scores. A 

class which possesses a maximum classification score is given as the class member-

ship for an unknown sample. 

3 Experimentation and Results 

3.1 Datasets 

We have used totally four different supervised interval datasets for experimenta-

tion. The four different benchmarking datasets used are: Iris [2], Car [12], Water [13], 

and Fish [12] datasets. The Iris interval dataset consists of 30 samples with 4 interval 

features. The 30 samples are spread across the three different classes, with 10 samples 

per class. The Car dataset consists of 33 samples with 8 interval features. The samples 

are spread across the 4 different classes with 10, 8, 8, and 7 samples per class respec-

tively. The Fish dataset consists of 12 samples with 13 interval features. The samples 



are spread across 4 different classes, each with 4, 2, 4, and 2 samples respectively. 

Finally, the Water dataset consists of 316 samples with 48 interval features. The sam-

ples are spread across 2 different classes, each with 223 and 93 samples respectively. 

Among four datasets, the fish dataset seems to provide very less instances for classifi-

cation. Thus for this dataset, the classification results vary a lot compare to other da-

tasets. 

3.2 Experimental Setup 

In this sub-section, details of experimentation conducted on the four benchmarking 

supervised interval datasets are given. The experimentation is conducted in two phas-

es viz., training, and testing. During training phase, we consider a supervised interval 

feature matrix and obtained the class specific features as explained in section 2. These 

features are then preserved in a knowledgebase for classification. During testing 

phase, an unknown interval sample is considered and selected its class specific fea-

tures and performed classification as explained in sections 2.4 and 2.5. 

During training and testing, the samples of the dataset are varied from 30 percent 

to 70 percent (in steps 10 percent) and 70 percent to 30 percent (in steps 10 percent) 

respectively. For, interval K-Means clustering the maximum number of iterations is 

fixed to be 100. The value of K in interval K-Means clustering is varied from 2 to one 

less than number of features for all datasets except water dataset (In case water da-

taset, the K is varied till 21, as the clustering algorithm does not converge above that 

value). The parameter β in the symbolic classifier (C-2) is fixed to be 1. 

3.3 Results 

The validation of the proposed feature selection model is performed using classifi-

cation accuracy, defined as the ratio of correctly classified samples to the number of 

samples. The experimental results are tabulated for the best feature subset (results 

with feature selection (WFS)) obtained from the proposed model and also we have 

compared the classification results of the same datasets without using any feature 

selection models (results without feature selection (WoFS)). The tabulated results are 

shown from Table 1 to Table 4. 

Table 1. Comparison of classification accuracies obtained from the classifiers C-1 and C-2 

with different training-testing percentage for Iris dataset 

Train-

Test 

C-1 [10] C-2 [11] 

WFS WoFS WFS WoFS 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

30-70 3 100 4 100 3 100 4 100 

40-60 2 100 4 100 2 100 4 100 

50-50 2 100 4 100 3 100 4 100 

60-40 2 100 4 91.67 2 100 4 100 

70-30 2 100 4 88.89 3 100 4 100 



Table 2. Comparison of classification accuracies obtained from the classifiers C-1 and C-2 

with different training-testing percentage for Car dataset 

Train-

Test 

C-1 [10] C-2 [11] 

WFS WoFS WFS WoFS 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

30-70 2 76.19 8 42.86 2 61.90 8 71.43 

40-60 4 72.22 8 38.89 4 61.11 8 77.78 

50-50 3 81.25 8 50 4 56.25 8 81.25 

60-40 2 66.67 8 50 4 83.33 8 83.33 

70-30 2 66.67 8 55.56 2 55.56 8 88.89 

Table 3. Comparison of classification accuracies obtained from the classifiers C-1 and C-2 

with different training-testing percentage for Fish dataset 

Train-

Test 

C-1 [10] C-2 [11] 

WFS WoFS WFS WoFS 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

30-70 3 66.67 13 66.67 6 50 13 66.67 

40-60 5 100 13 66.67 7 66.67 13 66.67 

50-50 10 66.67 13 66.67 10 66.67 13 66.67 

60-40 3 100 13 100 2 50 13 100 

70-30 8 100 13 100 2 50 13 100 

Table 4. Comparison of classification accuracies obtained from the classifiers C-1 and C-2 

with different training-testing percentage for Water dataset 

Train-

Test 

C-1 [10] C-2 [11] 

WFS WoFS WFS WoFS 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

# of  

Features 
Accuracy 

30-70 11 68.78 48 66.52 2 71.50 48 63.80 

40-60 14 68.09 48 65.96 14 71.81 48 60.11 

50-50 5 70.70 48 65.61 6 73.89 48 56.05 

60-40 4 69.84 48 54.76 20 77.78 48 62.70 

70-30 2 76.34 48 63.44 10 79.57 48 59.14 

 

From the above tables (Table 1 to 4), it is very clear that the classification perfor-

mance has been increased due to the incorporation of feature selection method com-

pared to that of not using any feature selection method. It is also so clear that the best 

results are quoted for lesser number of features. 

To test effectiveness of the proposed model, we have used the datasets containing 

different feature dimensions (from 4 to 48). From the results, one can notice that the 

model performs well even for such kind of datasets in-spite of selecting very few 

features. This shows the robustness of the proposed model under varied feature sizes 

of the dataset. 



4 Comparative Analysis 

To corroborate the effectiveness of the proposed model, the comparative analyses 

are given. Initially, the proposed model is compared against the state-of-the-art meth-

ods in terms of classification accuracy and the same is tabulated in Table 5. Further, 

we have compared our model with the other models which do not use any feature 

selection during classification. In literature, we found such classification models re-

ported only on Car dataset. Hence, we have given comparison with only Car dataset 

and is given in Table 6. 

Table 5. Comparison of proposed feature selection method v/s other existing methods 

 Lyamine et. al., [5] Chih-Ching et. al., [6] Proposed model 

Classifier  LAMDA LAMDA C-1 [10] C-2 [11] 

Dataset  
Feature 

Subset 
Accuracy 

Feature 

Subset 
Accuracy 

Feature 

Subset 
Accuracy 

Feature 

Subset 
Accuracy 

Car 5 78 -- -- 3 81.25 4 83.33 

Fish 4 74 -- -- 3 100 7 66.67 

Water 14 77 11 78.66 2 76.34 10 79.57 

 

The Table 6 justifies that the classification model with feature selection outper-

forms well compared to that of other models which do not use any feature selection 

methods during classification. This is because; the proposed feature selection model 

selects only the features of interest through clustering instead of considering all fea-

tures. 

From Table 5 and Table 6, it is very clear that the proposed model not only outper-

forms the existing models in terms of accuracy but also in terms of selecting number 

of features. This shows that the proposed model is much better than the similarity 

margin based models [5] and [6]. The selected feature subset and their class specific 

features indices corresponding to C-1 and C-2 classifiers are given in Table 7. 

Table 6. Comparison of classification with the proposed feature selection method v/s the 

existing classification methods without using any feature selection methods for Car interval 

dataset 

Methods Accuracy 

Proposed Method 
C-1 (WFS) 81.25 

C-2 (WFS) 83.33 

Barros et. al., [14] 
Binary Model 48.49 

Multinomial 54.55 

Renata et. al., [15] 

IDPC-CSP 63.64 

IDPC-VSP 63.6 

IDPC-PP 72.8 

Silva and Bruto, [16] 
Distributional approach  73 

Mid points and Ranges 55 



Table 7. Selected feature subsets and their corresponding feature indices 

Dataset 

(# of Class) 
C-1 C-2 

Car 

(4) 

{(1,3,4), (2,4,1), 

(3,1,2), (1,8,4)} 
{(4,3,6,1), (1,2,3,4), (2,1,5,4), (1,8,6,5)} 

Fish 

(4) 

{(12,4,7), (8,1,9), 

(4,12,1), (9,3,6)} 

{(1,9,3,12,2,4,7), (1,3,5,9,11,6,7), 

(9,11,1,5,8,6,12), (3,12,2,9,8,13,7)} 

Water 

(2) 
{(5,18), (23,34)} 

{(38,42,18,8,34,35,40,24,4,14), 

(13,32,27,31,22,34,36,18,3,16)} 

5 Conclusion 

In this paper, a novel idea for selection of supervised interval data through cluster-

ing is introduced. The proposed model incorporates the concept of symbolic similarity 

measure to build the interval K-Means clustering. The cluster representatives are 

computed based on the symbolic similarity measure. Later on, the indices of cluster 

representatives are preserved in the knowledgebase. During testing, for a sample, the 

class specific feature indices are selected from knowledgebase and classified using 

symbolic classifier. The proposed model has been well exploited for different interval 

supervised datasets and also it outperformed against other existing models in terms of 

classification accuracy and also in terms of dimension. 
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