Skip to main content

A Kernel Density Estimation Model for Moving Object Detection

  • Conference paper
  • First Online:
Advanced Multimedia and Ubiquitous Engineering (FutureTech 2017, MUE 2017)

Abstract

Moving object segmentation is an important component of many vision systems, especially in the non-static background. This paper proposes an approach based on Kernel Density Estimation that can handle situations where the background of the scene is not completely static but contains significant stochastic motion (e.g. water). To get the initial results, a higher dimensional KDE model using the observing pixel intensity values and the information of optical flow is built. Then a KDE observing model based on the Hidden Markov Random Field Model and the Expectation Maximization frame work, is used for segmented the moving object. Experimental results show that the proposed approach can accurately detect moving objects and use less video frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kulchandani, J.S., Dangarwala, K.J.: Moving object detection: review of recent research trends. In: International Conference on Pervasive Computing (2015)

    Google Scholar 

  2. Shaikh, S.H., Saeed, K., Chaki, N.: Moving Object Detection Using Background Subtraction. Springer, Cham (2014)

    Google Scholar 

  3. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 747–757 (2000)

    Article  Google Scholar 

  4. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000). doi:10.1007/3-540-45053-X_48

    Chapter  Google Scholar 

  5. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction, vol. 2, pp. 28–31 (2004)

    Google Scholar 

  6. Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1778–1792 (2005)

    Article  Google Scholar 

  7. Bhaskar, P.K., Yong, S.P.: Image processing based vehicle detection and tracking method. In: International Conference on Computer and Information Sciences, pp. 1–5 (2014)

    Google Scholar 

  8. Xiang, J., Fan, H., Liao, H., Xu, J., Sun, W., Yu, S.: Moving object detection and shadow removing under changing illumination condition. Math. Prob. Eng. 2014, 10 (2014)

    MathSciNet  Google Scholar 

  9. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 32, 171–177 (2009)

    Article  Google Scholar 

  10. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  11. Wang, Q.: HMRF-EM-image: implementation of the hidden markov random field model and its expectation-maximization algorithm. Comput. Sci. 94-b, 222–233 (2012)

    Google Scholar 

  12. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001)

    Article  Google Scholar 

  13. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Piccardi, M., Perez, O.: Hidden markov models with kernel density estimation of emission probabilities and their use in activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China 61371175 and Fundamental Research Funds for the Central Universities HEUCFQ20150812.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulong Qiao or Wei Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Qiao, Y., Xi, W. (2017). A Kernel Density Estimation Model for Moving Object Detection. In: Park, J., Chen, SC., Raymond Choo, KK. (eds) Advanced Multimedia and Ubiquitous Engineering. FutureTech MUE 2017 2017. Lecture Notes in Electrical Engineering, vol 448. Springer, Singapore. https://doi.org/10.1007/978-981-10-5041-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5041-1_63

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5040-4

  • Online ISBN: 978-981-10-5041-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics