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Abstract

In this article, we investigate the bound of the valency of the Cayley graphs of the
generalized quaternion groups which guarantees to be Ramanujan. As is the cases of the
cyclic and dihedral groups in our previous studies, we show that the determination of the
bound in a special setting is related to the classical Hardy-Littlewood conjecture for primes
represented by a quadratic polynomial.
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1 Introduction

Expander graph is a sparse graph having strong connectivity properties. Because of its rich

theory with many applications, it is widely studied in various fields of mathematics such as

combinatorics, group theory, differential geometry and number theory (see [7, 9] for survey of

the expander graphs). In particular, Ramanujan graph, which is an optimal expander graph

in the sense of Alon Boppana’s theorem and was first defined in [10], plays an important role

in not only pure mathematics but also applied mathematics. Actually, because a graph is

Ramanujan if and only if the associated Ihara zeta function satisfies the “Riemann hypothesis”,

it has a special interest for number theorists, especially who study zeta functions (see, e.g.,

[11]). Moreover, from the fact that a random walk on a Ramanujan graph quickly converges to

the uniform distribution, it is used to construct a cryptography hash function [3]. From these

reasons, it is worth finding or constructing Ramanujan graphs as many as possible, however, it

is in general difficult.

In this paper, we consider the following problem on Ramanujan graphs. Naively, one easily

imagines that, because a Ramanujan graph has a strong connectivity property, if we have a

Ramanujan graph, then there expects to be another Ramanujan graph around it (cf. [1]). This

means that, even if we get rid of some edges from the given Ramanujan graph anyhow, it may

remain to be Ramanujan. Now our problem is to clarify how many edges we can freely remove

from the given Ramanujan graph with remaining to be Ramanujan in a given family of graphs.

In particular, as a first stage, we consider this problem starting from the trivial Ramanujan

∗Partially supported by Grant-in-Aid for Scientific Research (C) No. 15K04785.
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graph, that is, the complete graph, in a family of Cayley graphs of a fixed group. Notice that, in

this setting, removing edges corresponds to reducing elements of a Cayley subset of the group.

See the end of Section 2 for more precise mathematical formulation of our problem.

In [5], we first investigated this problem for the cyclic groups. Moreover, in [6], we studied

it for the dihedral groups, which are non-abelian (simplest) extensions of the previous case (we

actually consider this problem for groups in the class of the Frobenius groups in [6], which

contains for example the semi-direct product of the cyclic groups and hence, especially, the

dihedral groups). In both cases, we showed that the determination of the above maximal number

of removable edges (it corresponds to l̃ in our formulation) is related to the classical Hardy-

Littlewood conjecture on analytic number theory, which asserts that every quadratic polynomials

express infinitely many primes under some standard conditions, if the order of the group is odd

prime (resp. twice odd prime) in the case of the cyclic group (resp. the dihedral group). In

succession to these cases, in the present paper, we work the same problem for the generalized

quaternion group Q4m and actually obtain the similar result (Theorem 4.9) if we choose the

set of Cayley graphs suitably. Notice that we indeed consider a wider class of groups in the

sense that Q4m can not be expressed as any semi-directed product of the cyclic groups. We also

remark that our discussion may be applied to groups whose maximal degree of the irreducible

representations is at most two.

We use the following notations in this paper. The set of all real numbers, integers and odd

primes are denoted by R, Z and P, respectively. For x ∈ R, ⌊x⌋ (resp. ⌈x⌉) denote the largest

(resp. smallest) integer less (resp. greater) than or equal to x. We also note that the most of

our numerical computations are performed by using Mathematica.

2 Preliminary

In this section, we prepare some definitions and notations of graph theory, which are necessary

for our discussion (see, more precisely, [8]). Throughout this paper, all graphs are assumed to

be finite, undirected, connected, simple and regular.

Let X be a k-regular graph with m-vertices. The adjacency matrix AX of X is the symmetric

matrix of size m whose entry is 1 if the corresponding pair of vertices are connected by an edge

and 0 otherwise. We call the eigenvalues of AX the eigenvalues of X. Let Λ(X) be the set

of all eigenvalues of X. We know that it can be written as Λ(X) =
{

k = λ0 > λ1 ≥ · · · ≥
λm−1

}

⊂ [−k, k]. Let λ(X) be the largest non-trivial eigenvalue of X in the sense of absolute

value; λ(X) = max
{

|λ|
∣

∣λ ∈ Λ(X), |λ| 6= k
}

. Then, X is called Ramanujan if the inequality

λ(X) ≤ 2
√
k − 1 holds. Here the constant 2

√
k − 1 is called the Ramanujan bound for X and

is denoted by RB(X).

Let G be a finite group with the identity element 1. Let S be a Cayley subset of G, that is,

S is a symmetric generating subset of G without 1. We denote by X(S) the Cayley graph of G

with respect to the Cayley subset S. This is |S|-regular graph whose vertex set is G and edge

set {(x, y) ∈ G2 |x−1y ∈ S}. Let SG be the set of all Cayley subset of G. In what follows, for

S ∈ S, we write Λ(S) = Λ(X(S)), λ(S) = λ(X(S)), RB(S) = RB(X(S)), and so on. It is well

known that the eigenvalues of X(S) can be described in terms of the irreducible representations

of G as follows.

Lemma 2.1 (cf. [2]). Let G be a finite group and Irr(G) the set of all equivalence classes of the
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irreducible representations of G. Then, for S ∈ SG, we have

Λ(S) =
⋃

π∈Irr(G)

dπ · Spec(Mπ(S)),

where, for π ∈ Irr(G), dπ is the degree of π, Mπ(S) =
∑

s∈S π(s) and Spec(Mπ(S)) is the set of

all eigenvalues of Mπ(S). Here, we understand that an element in Spec(Mπ(S)) is counted dπ
times in dπ · Spec(Mπ(S)).

We here explain our problem on Ramanujan graphs. For a set S ⊂ SG of Cayley subsets of

G, let L = LG,S = {l(S) |S ∈ S} where l(S) = |G \ S| = |G| − |S| is the covalency of S ∈ S.
Then, we have the decomposition S = ⊔l∈LSl with Sl = {S ∈ S | l(S) = l}. Now our aim is to

determine the bound

l̃ = l̃G,S = max{l ∈ L |X(S) is Ramanujan for all S ∈ Sk (1 ≤ k ≤ l)}.

Remark that l̃ ≥ 1 if G\{1} ∈ S1 becauseX(G\{1}) is the complete graphK|G| with |G| vertices,
which is a (trivial) Ramanujan graph. Hence, in this case, roughly speaking, l̃ represents the

maximal number of removable edges from the complete graph K|G| keeping to be Ramanujan.

In this paper, we investigate l̃ when G is the generalized quaternion group.

3 Cayley graphs of the generalized quaternion groups

For a positive integer m, the generalized quaternion group Q4m is defined by

Q4m =
〈

x, y
∣

∣ x2m = 1, xm = y2, y−1xy = x−1
〉

.

This is non-commutative unless m = 1 and can not be expressed as a semi-direct product of

any pair of subgroups of Q4m. One easily sees that the order of Q4m is 4m because it has the

expression

Q4m = {xkyl | 0 ≤ k ≤ 2m− 1, l = 0, 1} = 〈x〉 ⊔ 〈x〉y,

where 〈x〉 = {xk | 0 ≤ k ≤ 2m − 1} and 〈x〉y = {xky | 0 ≤ k ≤ 2m − 1}. Notice that (xk)−1 =

x2m−k and (xky)−1 = xm+ky.

To calculate the eigenvalues of the Cayley graph of Q4m, we need the information about

the conjugacy classes and the irreducible representations of Q4m. For z ∈ Q4m, let C(z) be the

conjugacy class of Q4m containing z. Then, the following exhausts all conjugacy classes of Q4m;

C(1) = {1}, C(xk) = {xk, x2m−k} (1 ≤ k ≤ m − 1), C(xm) = {xm}, C(y) = {x2ky | 0 ≤ k ≤
m − 1} and C(xy) = {x2k+1y | 0 ≤ k ≤ m − 1}. Moreover, the irreducible representations of

Q4m are given as follows; χ1 = 1 (the trivial character), χ2, χ3 and χ4 which are of degree 1 and

ϕj (1 ≤ j ≤ m − 1) of degree 2. We give the values of these representations in Table 1. Here,

ω = e
2πi
2m .

From now on, we let S = SQ4m be the set of all Cayley subsets of Q4m. Let us calculate the

eigenvalues of the Cayley graph X(S) for S ∈ S. Put S1 = S ∩ 〈x〉 and S2 = S ∩ 〈x〉y so that

we can write

S = S1 ⊔ S2.

Moreover, put l1(S) = 2m−|S1| and l2(S) = 2m−|S2| so that l(S) = l1(S)+ l2(S). Notice that

S1 6= 〈x〉 since 1 /∈ S and hence l1(S) > 0 and S2 6= ∅ because S generates Q4m and therefore
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xk xky

χ1 1 1

χ2 1 −1

χ3 (−1)k i(−1)k

χ4 (−1)k i(−1)k+1

ϕj

[

ωjk 0

0 ω−jk

] [

0 ωjk

(−1)jω−jk 0

]

xk xky

χ1 1 1

χ2 1 −1

χ3 (−1)k (−1)k

χ4 (−1)k (−1)k+1

ϕj

[

ωjk 0

0 ω−jk

] [

0 ωjk

(−1)jω−jk 0

]

Table 1: The tables of the values of the irreducible representations of Q4m: the left one is the
case of odd m and the right one is of even m.

l2(S) < 2m. One sees that, because S is symmetric, both S1 and S2 are also symmetric. This

implies that they are respectively expressed as

(3.1)

S1 =
⊔

xk1∈S
1≤k1≤m−1

{

xk1 , x2m−k1
}

⊔ {xm}δ ,

S2 =
⊔

xk2y∈S
0≤k2≤m−1

{

xk2y, xm+k2y
}

,

where δ = δ(S) = 1 if xm ∈ S and 0 otherwise. Here, we understand that A0 = ∅ and A1 = A

for any set A. From these expressions, we have l2(S) ≡ 0 (mod 2) and l1(S) ≡ l(S) ≡ δ (mod 2).

Based on the above expression, we obtain the following decomposition of S;

(3.2) S =
⊔

l∈L
Sl =

⊔

l∈L

⊔

(l1,l2)∈Ll

Sl1,l2 ,

where

Ll =

{

(l1, l2) ∈ Z
2

∣

∣

∣

∣

0 < l1 ≤ 2m, l1 ≡ l (mod 2),
0 ≤ l2 < 2m, l2 ≡ 0 (mod 2),

l1 + l2 = l

}

and Sl1,l2 = {S ∈ S | l1(S) = l1, l2(S) = l2} for l ∈ L and (l1, l2) ∈ Ll.

Put

σe
1 = σe

1(S) = #{k1 ∈ Z | 1 ≤ k1 ≤ m− 1, xk1 ∈ S, k1 ≡ 0 (mod 2)},
σo
1 = σo

1(S) = #{k1 ∈ Z | 1 ≤ k1 ≤ m− 1, xk1 ∈ S, k1 ≡ 1 (mod 2)},
σe
2 = σe

2(S) = #{k2 ∈ Z | 0 ≤ k2 ≤ m− 1, xk2y ∈ S, k2 ≡ 0 (mod 2)},
σo
2 = σo

2(S) = #{k2 ∈ Z | 0 ≤ k2 ≤ m− 1, xk2y ∈ S, k2 ≡ 1 (mod 2)}.

Using these notations, it can be written as |S1| = 2(σe
1 + σo

1) + δ and |S2| = 2(σe
2 + σ0

2). Note

that

0 ≤ σe
1 ≤

m− 1

2
, 0 ≤ σo

1 ≤ m− 1

2
, 0 ≤ σe

2 ≤
m+ 1

2
, 0 ≤ σo

2 ≤ m− 1

2
if m is odd and

0 ≤ σe
1 ≤

m

2
− 1, 0 ≤ σo

1 ≤ m

2
, 0 ≤ σe

2 ≤
m

2
, 0 ≤ σo

2 ≤ m

2

otherwise.

From Lemma 2.1 together with the expression (3.1) of the Cayley subset, one can explicitly

calculate the eigenvalues of X(S) as follows.
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Lemma 3.1. For S ∈ S, we have

Λ(S) = 1 · {λ1, λ2, λ3, λ4} ∪
m−1
⋃

j=1

2 ·
{

µ+
j , µ

−
j

}

.

Here, for 1 ≤ j ≤ m− 1, µ±
j = µ±

j (S) is given by µ±
j = zj ± |wj | with

zj = zj(S) =
∑

xk1∈S
0≤k1≤2m−1

ωjk1 =
∑

xk1∈S
1≤k1≤m−1

(ωjk1 + ω−jk1) + δ(−1)j ,

wj = wj(S) =
∑

xk2y∈S
0≤k2≤2m−1

ωjk2 =
(

1 + (−1)j
)

∑

xk2y∈S
0≤k2≤m−1

ωjk2 ,

and, for 1 ≤ i ≤ 4, λi = λi(S) are respectively given as follows.

(1) When m is odd,

λ1 = 2(σe
1 + σo

1) + δ + 2(σe
2 + σo

2),

λ2 = 2(σe
1 + σo

1) + δ − 2(σe
2 + σo

2),

λ3 = 2(σe
1 − σo

1)− δ,

λ4 = 2(σe
1 − σo

1)− δ.

(2) When m is even,

λ1 = 2(σe
1 + σo

1) + δ + 2(σe
2 + σo

2),

λ2 = 2(σe
1 + σo

1) + δ − 2(σe
2 + σo

2),

λ3 = 2(σe
1 − σo

1) + δ + 2(σe
2 − σo

2),

λ4 = 2(σe
1 − σo

1) + δ − 2(σe
2 − σo

2).

Proof. These are directly obtained from the above tables of the values of the irreducible represen-

tations ofQ4m. We notice that λi = Mχi(S) and {µ+
j , µ

−
j } = Spec(Mϕj (S)) = Spec

([

zj wj

wj zj

])

.

Remark that λ1 = |S|, which corresponds to the trivial character, is the largest eigenvalue

of X(S). We also notice that zj ∈ R and wj = 0 if j is odd.

The following lemma is useful in the case of estimating the eigenvalues of X(S) corresponding

to λi.

Lemma 3.2. Fix l ∈ L and (l1, l2) ∈ Ll. Let S ∈ Sl1,l2. Then, we have λ1 = 4m − l and

λ2 = −l + 2l2. Moreover,

(1) when m is odd and

(i) l is odd, we have −(l− l2) ≤ λ3 = λ4 ≤ l− l2− 2. The absolute values |λ3| = |λ4| of λ3

and λ4 take the maximum value l − l2 if and only if (σe
1, σ

o
1) = (m+1

2 − l−l2+1
2 , m−1

2 ).

(ii) l is even, we have −(l−l2−2) ≤ λ3 = λ4 ≤ l−l2−2. The absolute values |λ3| = |λ4| of
λ3 and λ4 take the maximum value l−l2−2 if and only if (σe

1, σ
o
1) = (m+1

2 − l−l2
2 , m−1

2 )

or (m−1
2 , m+1

2 − l−l2
2 ).
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(2) when m is even, we have −l ≤ λ3 ≤ l + 2δ − 4 and −l ≤ λ4 ≤ l + 2δ − 4. The absolute

values |λ3| of λ3 takes the maximum value l if and only if (σe
1, σ

o
1) = (m2 − l−l2+δ

2 , m2 ) and

(σe
2, σ

o
2) = (m2 − l2

2 ,
m
2 ). Similarly, the absolute values |λ4| of λ4 takes the maximum value

l if and only if (σe
1, σ

o
1) = (m2 − l−l2+δ

2 , m2 ) and (σe
2, σ

o
2) = (m2 ,

m
2 − l2

2 ).

Proof. The claims on λ1 and λ2 are clear from Lemma 3.1 with the expressions l1 = 2m−(2(σe
1+

σo
1) + δ), l2 = 2m− 2(σo

2 + σo
2) and l1 = l − l2. Now, let us consider the other cases.

When m is odd, since 0 ≤ σe
1 ≤ m−1

2 and 0 ≤ σo
1 ≤ m−1

2 , we see that σe
1 + σo

1 = m− l−l2+δ
2

implies that − l−l2+δ−2
2 ≤ σe

1 − σo
1 ≤ l−l2+δ−2

2 . This shows that −(l − l2 − 2) − 2δ ≤ λ3 = λ4 ≤
l − l2 − 2. Now |λ3| = |λ4| takes maximum value l − l2 if l is odd, which is indeed realized

when − l−l2+δ−2
2 = σe

1 − σo
1 (with δ = 1), and l − l2 − 2 otherwise, which is realized when

σe
1 − σo

1 = ± l−l2+δ−2
2 (with δ = 0).

When m is even, since 0 ≤ σe
1 ≤ m

2 − 1, 0 ≤ σo
1 ≤ m

2 , 0 ≤ σe
2 ≤ m

2 and 0 ≤ σo
2 ≤ m

2 , we see

that σe
1 + σo

1 = m− l−l2+δ
2 and σe

2 + σo
2 = m− l2

2 imply that − l−l2+δ
2 ≤ σe

1 − σo
1 ≤ l−l2+δ−4

2 and

− l2
2 ≤ σe

2−σo
2 ≤ l2

2 , respectively. This shows that −l ≤ λ3 ≤ l+2δ−4 and −l ≤ λ4 ≤ l+2δ−4.

Similarly as the above, |λ3| takes maximum value l if − l−l2+δ
2 = σe

1 −σo
1 and − l2

2 = σe
2 −σo

2 and

|λ4| takes l if − l−l2+δ
2 = σe

1 − σo
1 and σe

2 − σo
2 = l2

2 .

4 Main results

4.1 Trivial lower bound of l̃

We first show that a lower bound of l̃ is obtained by using the trivial estimate of the eigenvalues

of Cayley graphs.

Lemma 4.1. Assume |S| ≥ 2m. Then, for all λ ∈ Λ(S) with |λ| 6= |S|, we have |λ| ≤ l(S).

Proof. The claim is clear for the cases λ = λi for 2 ≤ i ≤ 4. Actually, since λi =
∑

s∈S χi(s) =

−∑s/∈S χi(s), by the orthogonality of characters, it holds that |λi| ≤ min{|S|, l(S)} = l(S). We

next consider the cases λ = µ±
j for 1 ≤ j ≤ m− 1. Let |µj | = max{|µ+

j |, |µ−
j |}. As is the case of

the dihedral groups [6], we see that

(4.1) |µj | = |zj |+ |wj |.

Hence, since

zj =
∑

xk1∈S
0≤k1≤2m−1

ωjk1 = −
∑

xk1 /∈S
0≤k1≤2m−1

ωjk1 ,

wj =
∑

xk2y∈S
0≤k2≤2m−1

ωjk2 = −
∑

xk2y/∈S
0≤k2≤2m−1

ωjk2 ,

we have |µj| ≤ min{|S1|, l1(S)} + min{|S2|, l2(S)}. Now, it is easy to see that the right-hand

side of the inequality is bounded above by l(S).

Proposition 4.2. Let l0 = ⌊4√m⌋ − 2. Then, we have l̃ ≥ l0.

Proof. From Lemma 4.1, we see that if l(S) ≤ RB(S) = 2
√

|S| − 1 = 2
√

(4m− l(S))− 1, then

X(S) is Ramanujan. Now one sees that this is equivalent to l(S) ≤ 4
√
m− 2 and hence obtain

the desired result. Remark that l(S) ≤ 4
√
m− 2 implies that l(S) ≤ 2m, that is, |S| ≥ 2m for

all m ≥ 1.
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We call l0 a trivial bound of l̃. Using Lemma 3.2, we can easily determine the bound l̃ in

the case of S = SQ4m .

Theorem 4.3. We have l̃ = l0.

Proof. Take any S ∈ Sl0+1 with l2(S) = 0, that is, S ∈ Sl0+1,0. Then, from Lemma 3.2, we have

|λ2| = l0 + 1 and hence, by the definition of l0, |λ2| > RB(S). This means that X(S) is not

Ramanujan.

4.2 A modification

From Theorem 4.3, in the case of S = SQ4m , we may not expect a connection between our

problem on Ramanujan graphs and a problem on analytic number theory, as our previous studies

in the cases of the cyclic and dihedral groups [5, 6]. So, we next take another set of Cayley subsets

of Q4m, that is,

S ′ = {S ∈ SQ4m | l2(S) 6= 0}.

Notice that l2(S) 6= 0 is equivalent to S2 6= 〈x〉y. This means that the setting on S ′ is reasonable

in the sense that we do not consider the extreme case S2 = 〈x〉y. Furthermore, put L′ =

{l(S) |S ∈ S ′} and S ′
l = Sl ∩ S ′. Now our new purpose is to determine the bound

l̃′ = max{l ∈ L′ |X(S) is Ramanujan for all S ∈ S ′
k (1 ≤ k ≤ l)}.

It is clear that

(4.2) l̃′ ≥ l0.

Moreover, it holds that

Theorem 4.4. When m is even, we have l̃′ = l0.

Proof. From Lemma 3.2 (2), we can find S ∈ S ′
l0+1 with l2(S) 6= 0 satisfying |λ3| = l0 + 1 >

RB(S) (or |λ4| = l0 + 1 > RB(S)). This immediately shows that X(S) is not Ramanujan.

From this theorem, we may assume in what follows that m is odd. Remark that, in this

case, from Lemma 3.2 again, we have |λi| < l for 2 ≤ i ≤ 4 for any l ∈ L′ and S ∈ S ′
l .

4.3 An upper bound of l̃′

As is the case of S, it is convenient to decompose S ′ as follows;

(4.3) S ′ =
⊔

l∈L′

S ′
l =

⊔

l∈L′

⊔

(l1,l2)∈L′
l

S ′
l1,l2 ,

where

L′
l =

{

(l1, l2) ∈ Z
2

∣

∣

∣

∣

0 < l1 ≤ 2m, l1 ≡ l (mod 2),
0 < l2 < 2m, l2 ≡ 0 (mod 2),

l1 + l2 = l

}

and S ′
l1,l2

= Sl1,l2 ∩ S ′ for l ∈ L′ and (l1, l2) ∈ L′
l.

The aim of this subsection is to show the following result.

Proposition 4.5. For m ≥ 65, we have l̃′ = l0 or l̃′ = l0 + 1.
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Let l ∈ L′. To prove Proposition 4.5, we first construct S(l1,l2) ∈ S ′
l1,l2

for each (l1, l2) ∈ L′
l

such that X(S(l1,l2)) may have the maximal eigenvalue (in the sense of absolute value) among

X(S) with S ∈ S ′
l1,l2

. Let (l1, l2) ∈ L′
l. We define S(l1,l2) = S

(l1)
1 ⊔ S

(l2)
2 ∈ S ′

l1,l2
by

S
(l1)
1 = 〈x〉 \ {1, x±1, . . . , x±

l1−2+δ
2 } ∪ {xm}1−δ,

S
(l2)
2 = 〈x〉y \ {y, xy, . . . , x

l2
2
−1y, xmy, xm+1y, . . . , xm+

l2
2
−1y},

where δ = 1 if l is odd and 0 otherwise. We respectively write zj , wj and |µj | as z(l1,l2)j , w
(l1,l2)
j

and |µ(l1,l2)
j | when S = S(l1,l2). Recall that w

(l1,l2)
j = 0 when j is odd. On the other hand when

j is even, we have

w
(l1,l2)
j = −2

l2
2
−1
∑

k2=0

e
2πijk2

2m = −2e
πij(l2−2)

4m
sin πjl2

4m

sin πj
2m

.

Moreover, z
(l1,l2)
j is calculated as

z
(l1,l2)
j = −







l1−2+δ
2
∑

k1=− l1−2+δ
2

e
2πijk1

2m + (1− δ)(−1)j







= −
(

sin πj(l1−1+δ)
2m

sin πj
2m

+ (1− δ)(−1)j

)

.

Hence we have

(4.4) |µ(l1,l2)
j | =

(

sin πj(l1−1+δ)
2m

sin πj
2m

+ (1− δ)(−1)j

)

+ δj

(

2
sin πjl2

4m

sin πj
2m

)

,

where δj = 1 if j is even and 0 otherwise. We now focus on the case of j = 2.

Lemma 4.6. Let l ∈ L′. When l ≡ r (mod 6) for 0 ≤ r ≤ 5, we have

(4.5) max
{

|µ(l1,l2)
2 |

∣

∣

∣
(l1, l2) ∈ L′

l

}

= |µ(ľ1,ľ2)
2 |,

where (ľ1, ľ2) = ( l+ar
3 , 2l−ar

3 ) ∈ L′
l with

a1 = 2, a3 = 0, a5 = −2, a0 = 0, a2 = 4, a4 = 2.

Proof. It holds that

∂

∂l2
|µ(l1,l2)

2 | =
2π
m

sin π
m

sin
π(2(l − 1 + δ)− l2)

4m
sin

π(2(l − 1 + δ)− 3l2)

4m
.

Hence, noting that l, l1 and l2 are small enough rather than m, we see that, as a continuous

function of l2,
∂
∂l2

|µ(l1,l2)
2 | = 0 on [1, l] if and only if l2 = 2(l−1+δ)

3 , which means that |µ(l1,l2)
2 |

is monotone increasing on [1, 2(l−1+δ)
3 ] and decreasing on [2(l−1+δ)

3 , l]. Let us find (l±1 , l
±
2 ) ∈ L′

l

such that l−2 is the maximum and l+2 the minimum integer satisfying l−2 ≤ 2(l−1+δ)
3 ≤ l+2 (notice
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that l±1 are automatically determined from l±2 by l±1 + l±2 = l). If we write l = 6k + r, then one

sees that these are respectively given as follows:

r 1 3 5

(l−1 , l
−
2 ) (2k + 1, 4k) (2k + 1, 4k + 2) (2k + 3, 4k + 2)

(l+1 , l
+
2 ) (2k − 1, 4k + 2) (2k + 1, 4k + 2) (2k + 1, 4k + 4)

r 0 2 4

(l−1 , l
−
2 ) (2k + 2, 4k − 2) (2k + 2, 4k) (2k + 2, 4k + 2)

(l+1 , l
+
2 ) (2k, 4k) (2k, 4k + 2) (2k + 2, 4k + 2)

Now the result follows from the facts |µ(l−1 ,l−2 )
2 | > |µ(l+1 ,l+2 )

2 | for r = 1, 2, |µ(l−1 ,l−2 )
2 | = |µ(l+1 ,l+2 )

2 |
for r = 3, 4 and |µ(l−1 ,l−2 )

2 | < |µ(l+1 ,l+2 )
2 | for r = 5, 0. Namely, (ľ1, ľ2) = (l−1 , l

−
2 ) for r = 1, 2,

(l−1 , l
−
2 ) = (l+1 , l

+
2 ) for r = 3, 4 and (l+1 , l

+
2 ) for r = 5, 0.

Using Lemma 4.6, we give a proof of Proposition 4.5.

Proof of Proposition 4.5. It is sufficient to show that there exists S ∈ L′
l0+2 such that X(S) is

not Ramanujan. Actually, let l0 = ⌊4√m⌋ − 2 ≡ r (mod 6) for 0 ≤ r ≤ 5. Take S(ľ1,ľ2) ∈ S ′
l0+2

with (ľ1, ľ2) = ( l0+2+ar+2

3 , 2(l0+2)−ar+2

3 ) ∈ L′
l0+2. Here the index of ar is considered modulo 6.

Then, noticing that 4
√
m− 1 < l0 + 2 ≤ 4

√
m, we have

|µ(ľ1,ľ2)
2 | −RB(S(ľ1,ľ2))

=
sin π(ľ1−1+δ)

m

sin π
m

+ (1− δ) + 2
sin πľ2

2m

sin π
m

− 2

√

4m− (ľ1 + ľ2)− 1

=
sin ( π

m ( l0+2+ar+2

3 − 1 + δ))

sin π
m

+ (1− δ) + 2
sin ( π

2m
2(l0+2)−ar+2

3 )

sin π
m

− 2
√

4m− (l0 + 2)− 1

>
sin π

m (4
√
m−1+ar+2

3 − 1 + δ)

sin π
m

+ (1− δ) + 2
sin π

2m
2(4

√
m−1)−ar+2

3

sin π
m

− 2
√

4m− (4
√
m− 1)− 1

= 1− 64π2 − 27

54
m− 1

2 +O(m−1)

as m → ∞. This shows that |µ(ľ1,ľ2)
2 | > RB(S(ľ1,ľ2)) for sufficiently large m and hence concludes

that the corresponding Cayley graph X(S(ľ1,ľ2)) is not Ramanujan. Actually, one can check that

the inequality holds for m ≥ 105. Moreover, we can numerically see that |µ(ľ1,ľ2)
2 |−RB(S(ľ1,ľ2)) >

0 for 65 ≤ m ≤ 103 (however it does not hold when m = 63).

4.4 A characterization of exceptional primes

From now on, we concentrate on the case where m = p is odd prime (we can perform the similar

discussion for general m as in [5], though it may be complicated). We know from Proposition 4.5

that it can be written as l̃′ = l0 + ε for some ε = εp ∈ {0, 1}. As is the case of the cyclic and

dihedral graphs [5, 6], we call p exceptional if ε = 1 and ordinary otherwise. Now our task is to

clarify which p ∈ P is exceptional.
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For l ∈ L′, let λ(l) = max{λ(S) |S ∈ S ′
l} and RB(l) = 2

√
4p− l − 1, which is nothing but

the Ramanujan bound of X(S) for S ∈ S ′
l . From the definition, p is exceptional if and only if

λ(l0 + 1) ≤ RB(l0 + 1).

Lemma 4.7. Let l ∈ L′. For (l1, l2) ∈ L′
l, let λ(l1, l2) = max{λ(S) |S ∈ S ′

l1,l2
}. Then, we have

λ(l1, l2) = |µ(l1,l2)
2 | for sufficiently large p.

Proof. Take any S ∈ S ′
l1,l2

. When j is odd, since wj = 0, we have |µj| = |zj | ≤ |z(l1,l2)1 | = |µ(l1,l2)
1 |

because p is prime. On the other hand when j is even, since jk is always even modulo 2p for

any k, it holds that |µj | ≤ |µ(l1,l2)
2 | by the same reason as above. Moreover, since

|µ(l1,l2)
1 | =

sin π(l1−1+δ)
2p

sin π
2p

− (1− δ) = (−2 + 2δ + l1) +O(p−2),

|µ(l1,l2)
2 | =

sin π(l1−1+δ)
p

sin π
p

+ (1− δ) + 2
sin πl2

2p

sin π
p

= (l1 + l2) +O(p−2),

we see that |µ(l1,l2)
2 | − |µ(l1,l2)

1 | = l2 + 2 − 2δ + O(p−2) as p → ∞. Hence, under the condition

l2 > 0, we have |µ(l1,l2)
2 | > |µ(l1,l2)

1 | for sufficiently large p. Combining this together with the fact

max{|λi| | 2 ≤ i ≤ 4, S ∈ S ′
l1,l2

} = l1 + l2 − 2 < |µ(l1,l2)
2 | for sufficiently large p, one obtains the

claim.

Proposition 4.8. Let p ≥ 67. When l0 ≡ r (mod 6) for 0 ≤ r ≤ 5, we have

λ(l0 + 1) = |µ(ľ1,ľ2)
2 |,

where (ľ1, ľ2) = ( l0+1+ar+1

3 , 2(l0+1)−ar+1

3 ) ∈ L′
l0+1.

Proof. This follows immediately from Lemma 4.6 and 4.7. Remark that the inequality |µ(ľ1,ľ2)
2 |−

|µ(ľ1,ľ2)
1 | > 0 in fact holds for p ≥ 67.

Write l0 = ⌊4√p⌋ − 2 as

l0 = 24k + r

for k ≥ 0 and 0 ≤ r ≤ 23. In this case, we see that p ∈ Ir,k ∩ P where

Ir,k =
{

t ∈ R

∣

∣ ⌊4
√
t⌋ − 2 = 24k + r

}

=

[

36k2 + 3(r + 2)k +
(r + 2)2

16
, 36k2 + 3(r + 3)k +

(r + 3)2

16

)

.

In other words, p can be written as p = fr,c(k) for some integers k ≥ 0 and c ∈ Z with fr,c(x)

being a quadratic polynomial defined by

fr,c(x) = 36x2 + 3(r + 3)x+ c

and −3k + ⌈ (r+2)2

16 ⌉ ≤ c ≤ ⌊ (r+3)2

16 ⌋.
For 0 ≤ r ≤ 23, let Ir =

⊔

k≥0 Ir,k ∩ P and Cr = {⌊ (r+3)2

16 ⌋ + s | − 5 ≤ s ≤ 0}. Moreover,

let C ′
r = {c ∈ Cr | fr,c(x) is irreducible over Z}. Furthermore, for c ∈ C ′

r, define kr,c ∈ Z as in

Table 2. The following is our main result, which gives a characterization for the exceptional

primes.
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Theorem 4.9. A prime p ∈ Ir with p ≥ 67 is exceptional if and only if it is of the form of

p = fr,c(k) for some c ∈ C ′
r and k ≥ kr,c.

Proof. We first notice that, from the previous discussion with Proposition 4.8, p is exceptional

if and only if |µ2(ľ1, ľ2)| ≤ RB(l0 + 1). To clarify when this inequality holds, we introduce an

interpolation function Fr(t) of the difference between |µ2(ľ1, ľ2)| and RB(l0 + 1) on Ir,k, that is,

Fr(t) =
sin

π(8k+
r+1+ar+1

3
−1+δ)

t

sin π
t

+ (1− δ) + 2
sin

π(16k+
2(r+1)−ar+1

3
)

2t

sin π
t

− 2
√

4t− (24k + r + 1)− 1.

Notice that (ľ1, ľ2) =
(

8k+ r+1+ar+1

3 , 16k+ 2(r+1)−ar+1

3

)

when l0 = 24k+r. One can see that Fr(t)

is monotone decreasing on Ir,k for sufficiently large k. Moreover, at t = p = fr,c(k) ∈ Ir,k ∩ P,

one has

Fr(p) =
27(r + 3)2 − 432c − 256π2

1296
k−1 +O(k−2)

as k → ∞ because

|µ2(ľ1, ľ2)| =
sin

π(8k+
r+1+ar+1

3
−1+δ)

36k2+3(r+3)k+c

sin π
36k2+3(r+3)k+c

+ (1− δ) + 2
sin

π(16k+
2(r+1)−ar+1

3
)

2(36k2+3(r+3)k+c)

sin π
36k2+3(r+3)k+c

= 24k + (1 + r)− 16π2

81
k−1 +O(k−2),

RB(l0 + 1) = 2
√

4(36k2 + 3(r + 3)k + c)− (24k + r + 1)− 1

= 24k + (1 + r)− (r + 3)2 − 16c

48
k−1 +O(k−2).

This shows that Fr(p) < 0 for sufficiently large k if and only if 27(r + 3)2 − 432c − 256π2 < 0,

in other words, ⌈27(r+3)2−256π2

432 ⌉ ≤ c. Here, we see that ⌈27(r+3)2−256π2

432 ⌉ = ⌊ (r+3)2

16 ⌋ − 5 for all

0 ≤ r ≤ 23, which means that c ∈ Cr. Moreover, since fr,c(k) does not express any prime if

fr,c(x) is not irreducible over Z, c must be in C ′
r. Furthermore, it is checked that, for each

0 ≤ r ≤ 23 and c ∈ C ′
r, the inequalities fr,c(k) ≥ 67 and Fr(p) < 0 for p = fr,c(k) hold if and

only if k ≥ kr,c. This completes the proof of the theorem.

For 0 ≤ r ≤ 23 and c ∈ C ′
r, let

Jr,c = {p | p = fr,c(k) ∈ Ir for some k ≥ kr,c}.

Namely, Jr,c is the set of exceptional primes p of the form of p = fr,c(k). We show the first five

such primes in Table 2 for each r and c.

The classical Hardy-Littlewood conjecture [4, Conjecture F] asserts that if a quadratic poly-

nomial f(x) = ax2 + bx + c with a, b, c ∈ Z satisfies the conditions that a > 0, a, b and c are

relatively prime, a+ b and c are not both even and the discriminant D(f) = b2 − 4ac of f is not

a square, then there are infinitely many primes represented by f(x) and, moreover, that

π(f ;x) = #{p ≤ x | p = f(k) ∈ P for some k ≥ 0}

obeys the asymptotic behavior

π(f ;x) ∼ ε(f)C(f)√
a

∏

p|a, p|b
p≥3

p

p− 1
·
√
x

log x
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r c ∈ C′
r fr,c(x) kr,c Jr,c Nr,c

C(fr,c)

2δr

0 −5 36x2 + 9x− 5 9 7177, 11821, 20947, 52321, 121621 9597 0.24501

0 −4 36x2 + 9x− 4 2 347, 941, 1823, 4451, 6197 17722 0.45086

0 −2 36x2 + 9x− 2 2 349, 6199, 8233, 16063, 19249 11061 0.28123

1 −1 36x2 + 12x− 1 2 167, 359, 1367, 1847, 2399 24414 0.61666

2 −4 36x2 + 15x− 4 9 4517, 16187, 22871, 30707, 44621 9685 0.24501

2 −2 36x2 + 15x− 2 1 367, 1867, 3049, 4519, 6277 13501 0.34106

2 −1 36x2 + 15x− 1 1 173, 2423, 11933, 14699, 28643 11181 0.28123

3 −1 36x2 + 18x− 1 2 179, 647, 1889, 2447, 3779 31692 0.80725

3 1 36x2 + 18x+ 1 1 181, 379, 991, 3079, 7309 23288 0.59109

4 −1 36x2 + 21x− 1 1 659, 7349, 9551, 12041, 33029 10633 0.26894

4 1 36x2 + 21x+ 1 1 661, 1423, 2473, 5437, 7351 15712 0.40086

4 2 36x2 + 21x+ 2 2 389, 1913, 6359, 13397, 16319 15405 0.39341

5 −1 36x2 + 24x− 1 2 191, 1019, 1439, 1931, 5471 23332 0.59109

5 1 36x2 + 24x+ 1 2 193, 397, 673, 1021, 1933 27255 0.69166

6 1 36x2 + 27x+ 1 1 199, 1459, 2521, 9649, 33211 10609 0.26894

6 4 36x2 + 27x+ 4 1 67, 409, 1039, 3163, 4657 15494 0.39341

7 1 36x2 + 30x+ 1 2 1051, 3187, 7477, 9697, 13567 18210 0.46393

7 5 36x2 + 30x+ 5 1 71, 419, 701, 1481, 1979 23192 0.59109

8 2 36x2 + 33x+ 2 9 4721, 8597, 23327, 61871, 81077 9591 0.24501

8 4 36x2 + 33x+ 4 1 73, 1069, 1999, 3217, 4723 13526 0.34106

8 5 36x2 + 33x+ 5 1 1499, 7523, 9749, 12263, 29153 10933 0.28123

9 7 36x2 + 36x+ 7 1 79, 223, 439, 727, 1087 24281 0.61666

10 5 36x2 + 39x+ 5 9 5657, 7607, 18287, 65147, 99377 9537 0.24501

10 7 36x2 + 39x+ 7 1 229, 739, 5659, 12373, 15187 13322 0.34106

10 8 36x2 + 39x+ 8 1 83, 449, 1103, 4793, 6599 11175 0.28123

11 7 36x2 + 42x+ 7 2 457, 751, 1117, 2647, 3301 18110 0.46393

11 11 36x2 + 42x+ 11 1 89, 239, 461, 1559, 2069 23297 0.59109

12 10 36x2 + 45x+ 10 1 2089, 3331, 4861, 6679, 16831 10588 0.26894

12 13 36x2 + 45x+ 13 1 769, 1579, 2677, 5737, 7699 15505 0.39341

13 11 36x2 + 48x+ 11 1 251, 479, 1151, 2111, 2699 23137 0.59109

13 13 36x2 + 48x+ 13 1 97, 1153, 1597, 2113, 3361 27257 0.69166

14 14 36x2 + 51x+ 14 1 101, 491, 3389, 4931, 6761 10559 0.26894

14 16 36x2 + 51x+ 16 1 103, 1171, 2137, 3391, 4933 15790 0.40086

14 17 36x2 + 51x+ 17 1 263, 797, 1619, 2729, 4127 15393 0.39341

15 17 36x2 + 54x+ 17 1 107, 269, 503, 809, 1187 31685 0.80725

15 19 36x2 + 54x+ 19 1 109, 271, 811, 2161, 4159 23208 0.59109

16 17 36x2 + 57x+ 17 8 2777, 29837, 34127, 54167, 72221 9606 0.24501

16 19 36x2 + 57x+ 19 1 277, 823, 1657, 7873, 15559 13448 0.34106

16 20 36x2 + 57x+ 20 1 113, 3449, 5003, 11393, 17093 11096 0.28123

17 23 36x2 + 60x+ 23 1 839, 1223, 2207, 5039, 5927 24229 0.61666

18 22 36x2 + 63x+ 22 8 9067, 11497, 24097, 27967, 36571 9662 0.24501

18 23 36x2 + 63x+ 23 1 293, 1697, 4253, 10247, 12821 17614 0.45086

18 25 36x2 + 63x+ 25 1 853, 1699, 2833, 7963, 12823 10918 0.28123

19 25 36x2 + 66x+ 25 1 127, 547, 2251, 2857, 5107 18271 0.46393

19 29 36x2 + 66x+ 29 1 131, 1259, 1721, 2861, 3539 23270 0.59109

20 29 36x2 + 69x+ 29 1 311, 881, 15809, 34499, 43991 10567 0.26894

20 31 36x2 + 69x+ 31 1 313, 883, 1741, 2887, 6043 15875 0.40086

20 32 36x2 + 69x+ 32 1 137, 563, 1277, 5147, 7013 15649 0.39341

21 31 36x2 + 72x+ 31 1 139, 571, 1291, 1759, 5179 23262 0.59109

22 35 36x2 + 75x+ 35 1 911, 2939, 13049, 22571, 26321 10591 0.26894

22 37 36x2 + 75x+ 37 1 331, 1783, 6121, 10453, 15937 15764 0.40086

22 38 36x2 + 75x+ 38 1 149, 587, 11717, 17489, 20807 15460 0.39341

23 37 36x2 + 78x+ 37 2 337, 1327, 1801, 2347, 10501 18177 0.46393

23 41 36x2 + 78x+ 41 1 599, 929, 2351, 2969, 3659 23223 0.59109

Table 2: The fifty-four quadratic polynomials fr,c(x) for 0 ≤ r ≤ 23 and c ∈ C ′
r.
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as x → ∞ where ε(f) is 1 if a+ b is odd and 2 otherwise and

C(f) =
∏

p ∤ a
p≥3

(

1−
(D(f)

p

)

p− 1

)

with
(

D
p ) being the Legendre symbol. The constant C(f) is called the Hardy-Littlewood constant

of f . Because the polynomial fr,c(x) satisfies the above conditions, we can expect that it indeed

represents infinitely many primes. In our case, it may hold that

π(fr,c;x) ∼
C(fr,c)

2δr

√
x

log x
, C(fr,c) =

∏

p≥5

(

1−
( (r+3)2−16c

p

)

p− 1

)

.

We also show both the numerical value of
C(fr,c)
2δr

and the exact number of Nr,c = #{p ≤
1012 | p = fr,c(k) ∈ Ir for some k ≥ kr,c} in Table 2. Notice that

√
x

log x = 36191.20 . . . when x =

1012.

The following is immediate from Theorem 4.9.

Corollary 4.10. There exists infinitely many exceptional primes if the Hardy-Littlewood con-

jecture is true for at least one of fr,c(x) for 0 ≤ r ≤ 23 and c ∈ C ′
r.

We notice that, if we can show that there exists infinitely many exceptional primes (in the

frame work of the graph theory) on the other hand, then it implies that at least one of fr,c(t)

represents infinitely many primes.

We also remark that though we omit to show here but the existence of infinitely many

ordinary primes is similarly verified by using Dirichlet’s theorem on arithmetic progressions as

[5, 6].
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