

The final publication is available at http://dx.doi.org/ 10.1007/978-981-10-5197-5_19

Shape computations without compositions

Iestyn Jowers1, Chris Earl1and George Stiny2

1 The Open University, Milton Keynes, UK
2 MIT, Cambridge MA, USA

iestyn.jowers@open.ac.uk

Abstract. Parametric CAD supports design explorations through generative

methods which compose and transform geometric elements. This paper argues

that elementary shape computations do not always correspond to valid composi-

tional shape structures. In many design cases generative rules correspond to com-

positional structures, but for relatively simple shapes and rules it is not always

possible to assign a corresponding compositional structure of parts which account

for all operations of the computation. This problem is brought into strong relief

when design processes generate multiple compositions according to purpose,

such as product structure, assembly, manufacture, etc. Is it possible to specify

shape computations which generate just these compositions of parts or are there

additional emergent shapes and features? In parallel, combining two composi-

tions would require the associated combined computations to yield a valid com-

position. Simple examples are presented which throw light on the issues in inte-

grating different product descriptions (i.e. compositions) within parametric CAD.

Keywords: Shape Computation, Composition, Embedding, Parametric CAD

1 Introduction

Design is often formalised in a hierarchical process; as Woodbury states ‘designers

organize their work as…recursive systems of parts with limited interactions between

parts’ [1]. Computer-aided design (CAD) replicates this approach, with design repre-

sentations constructed hierarchically as assemblies of parts, and in parametric CAD the

interactions between the parts are made explicit. Instead of defining single instances of

a design concept, parametric models define a range of concepts with varying interac-

tions between parts. Using parametric tools, designers dynamically explore these con-

cepts by modifying parameters that control the interactions between parts, either man-

ually or algorithmically [1]. Accordingly, Aish [2] identifies three themes that charac-

terise a parametric approach to design: geometry, composition and algorithmic thought.

Geometry includes the primitives used to describe a shape, i.e. points, lines, planes,

curves, etc., and the relationships between these. Composition defines the hierarchical

structure of the geometry, so that a concept is organised according to parts and sub-

parts. Algorithmic thought, or Logic for short, is the process by which concepts are

derived from a flow of interactions between geometry, within a defined composition.

2

These three elements, geometry, composition and logic are common generic com-

ponents of a range of creative processes although articulated differently across specific

processes. The differences can be exemplified by comparing creative processes in par-

ametric CAD and sketching. The way that design concepts are explored using pencil

and paper in sketching is different from parametric CAD [3]. The primary difference

lies in composition. When sketching, designers often change composition during ex-

ploration of a design concept to accommodate new ways of seeing, and to develop new

avenues to explore [4]. Such switches in interpretation during sketching are visually

intuitive, but computationally are difficult to achieve. Parametric tools are powerful at

changing geometry, perhaps through explicit parameter changes which modify primi-

tives individually, or in transforming the relationships between primitives. However,

when compared with sketching, these parametric tools are less adept at changing com-

position.

The differences between parametric CAD and sketching, however, are not just a

matter of degree, in terms of facility with compositions. The informal computations,

combining logic and geometry, effected through sketching do not depend on specific

compositions while the computations effected by parametric CAD take place within the

context of explicit compositions. The former offers the possibility of computation with-

out composition whilst the latter invokes composition as necessary for its computations.

For sketching, although compositions are not necessarily required, they are often used

to provide context and direction to see-move-see episodes [5].

This paper addresses the middle ground in design processes between the informal

sketch and parametric CAD. It uses a model of shape computation based on shape rules

[6] which covers characteristics of both sketching operations and the formal generative

transformations of parametric CAD [7]. It demonstrates that these types of shape com-

putation do not necessarily depend on compositions. Furthermore, such computations

do not necessarily generate compositions. This perspective exemplifies the difference

between sketching and parametric CAD. Compositions are defined in terms of geome-

try and logic which together constrain modifications of composition. This makes se-

lecting a suitable composition an important step in the construction of parametric mod-

els, because a model requires an appropriate set of parts to accommodate exploration

of design concepts. Subsequently, changing parts by changing compositions, although

possible, essentially resets the design process. More significantly, perhaps, the paper

demonstrates that changing compositions may just create a more elaborate chimera,

monstrous and wildly imaginative but lacking substance or practicality.

This paper explores this problem of shape composition from the perspective of

shape computation, where logic is formalised, not as a flow of interactions between

geometry, but as a process of applying shape replacement rules. There is a distinction

between these two types of logic, most notably in the way that compositions arise, be-

cause shape computations generate compositions. Shape computations mimic the

sketching process, and rules are used to accommodate new ways of seeing and new

ways of exploring [4]. As such, application of a rule changes the structure of a shape

according to recognised parts. Fig. 1 presents an illustrative example, reproduced from

Stiny [6]. The shape rule in Fig. 1a, rotates squares through 45o, and is applied to the

shape in Fig. 1b by recognising any of the squares embedded in the shape. Applying

3

the rule gives rise to a network of shapes in a visual shape computation, as illustrated

in Fig. 1c. The shape computation is finite, involving only seven distinct shapes, but

there are three different compositions of the shape, and these result from how the rule

is applied. Applying the rule to the small square gives rise to a different composition

than applying it to the large squares, and a third composition results from rotating the

two large squares so that line segments overlap.

Fig. 1. An elementary shape computation

In shape computation, reinterpretation of compositions is supported by the continuously

changing topology of shape [7], however implementing shape computations using par-

ametric CAD is problematic, because changes in composition are difficult to achieve.

Instead, it is desirable to identify part structures for shapes that will accommodate all

necessary compositions, so that all the parts of interest can be identified and all the

shapes in a computation can be derived. This paper explores how such part structures

can be identified, and builds on results presented by Stiny [6]. It focusses on the shape

4

computation illustrated in Fig. 1, which Stiny showed gives rise to a part structure

where the maximal edges of the shape in Fig. 1b are given by ababaababa, where a

and b are both line segments, and b = a√2. The paper also considers a slightly more

complicated shape computation. To scale the shape computation in Fig. 1, the obvious

next step is to add another square to the initial shape, as illustrated in Fig. 2. It might

be expected that the addition of the extra small square will result in a part structure that

is comparable to that found for the computation in Fig. 1. But, finding a part structure

that includes all compositions so that all shapes in the computation can be derived

seems to be impossible.

The reason why this is impossible is not obvious, but is intrinsically linked to the

periodic palindromic structure that Stiny identified for the computation in Fig. 1. This

structure arises as a result of the embedding relation between line segments as described

in [8], and in Section 2 key results concerning the part structures that result from em-

bedded lines are reviewed. In Section 3 these results are applied to derive the periodic

palindromic structure identified by Stiny for the shape computation in Fig. 1, and Sec-

tion 4 uses the same results to show that there is no single structure that will accommo-

date all compositions necessary to carry out the computation if the shape in Fig. 2 is

used as the initial shape. This result has implications with respect to the construction of

parametric models, and the selection of composition. It suggests that predicting future

manipulations is not the only barrier to identifying the correct composition for a partic-

ular parametric exploration. Some explorations are impossible to carry out using a sin-

gle composition, and it is not necessarily possible to combine compositions in a single

hierarchical structure.

Fig. 2. Three overlapping squares

2 The structure of embedded lines

The part structures necessary to accommodate lines embedded in lines were explored

in detail in [8]. There, the discussion was framed around a simple shape computation

involving the recognition of parts of a shape. The identity rule in Fig. 3a, was used to

recognise squares embedded in shapes composed of two squares sharing a common

edge, an example of which is illustrated in Fig. 3b.

Visually, the computation is trivial because the two squares are easily identified as

parts of the shape, as illustrated in Fig. 3c. Here, the compositions that result from rec-

ognising the either the small or large square are illustrated, but identifying a part struc-

ture for the shape that accommodates both these compositions is not trivial. The shared

edge of the two squares is the key characteristic of the shape computation, and conse-

quently the problem of identifying a part structure that accommodates both squares is

5

equivalent to identifying part structures that accommodate the elementary operation of

embedding a line inside another line, while taking into consideration the reflective sym-

metry of the lines. Fig. 4 illustrates the necessary part structure.

Fig. 3. A trivial shape computation

The triangles are included on the common edge to illustrate part structures while high-

lighting their symmetry. Each triangle correlates with a line segment embedded in an

edge, and these are subdivided into finer structures, representing lines embedded in

lines. Embedded lines associated with triangles are symmetrical, and their subdivision

into embedded parts is symmetrical; in this sense, the triangles represent the structure

of the edges as visual palindromes. The structures of the decomposed line segments are

also illustrated in the decomposition of the top edge of the smaller square and the bot-

tom edge of the larger, into line segments. A consequence of this decomposition is that

the edges of the larger square and the smaller square have a different part structure, but

shape computations that result from applying the rule in Fig. 3a can accommodate this

by having two versions of the rule.

Fig. 4. Part structures resulting from recognition of squares

The structure illustrated in Fig. 4 is the simplest structure that accommodates the short

edge being embedded in the long edge while retaining the symmetric properties of the

two squares. Intuitively, it might be expected that embedding a short edge as part of a

longer edge would simply result in a decomposition of the longer edge to accommodate

the shorter. But this is not what is shown in Fig. 4, and the reason for this becomes

apparent in the process for deriving the part structures of the edge. This process is il-

lustrated in Fig. 5, and involves resolving the symmetries of the visual palindromes

corresponding to the part structure of the edges.

6

Fig. 5. Deriving the part structure of embedded lines by resolving symmetries

Fig. 5a illustrates the high-level structure of the edges where, to account for the sym-

metric properties of the squares, each edge is identified as a visual palindrome, repre-

sented by a triangle. Fig. 5b illustrates the embedding of the shorter edge in the longer;

the structure of the longer edge now incorporates an embedded line that is the length of

the shorter edge, represented by the triangle highlighted in grey. This new structure

breaks the symmetry of the longer edge, which is addressed in Fig. 5c by reflecting the

smaller triangle in the illustrated axis of symmetry of the larger triangle. A new triangle

is defined by the overlap, and this represents further subdivision of the visual palin-

drome; it is this emergent form that requires a finer decomposition of the edges than

might be intuitively expected. Fig. 5d resolves the symmetry of the longer edge by

reflecting the emergent triangle in the illustrated axes of symmetry. Finally, in Fig. 5e,

the structure of the shorter edge is subdivided according to the structure of the longer

edge. The resulting part structure accounts for the symmetric properties of both squares,

and allows the edge of the smaller square to be embedded in the edge of the larger

square. The result is a periodic palindromic structure where the shorter edge can be

described by the string uvu and the longer edge can be described by the string uvuvu,

where u and v represent line segments of different lengths, determined by the ratio of

the lengths of the edges of the squares.

Fig. 6 explores the part structures that arise when different initial shapes are used in

this shape computation. In all of these, the shapes are composed of two squares sharing

a common edge, constrained such that the edge of the smaller square is embedded in

the larger, with both sharing an end point, and l, the edge length of the larger squares,

is kept constant while n, the edge length of the smaller squares, increases from Fig. 6a

to 6h. The shape rule simply recognises the square parts of the shape, and again, trian-

gles are included to illustrate the necessary part structures, whilst highlighting their

symmetry. This structure is also reflected in the decomposition of the top edge of the

smaller square and the bottom edge of the larger. In Fig. 6a, n < ½l and embedding the

shorter edge in the longer edge results in the part structure that is intuitively expected:

the structure of the shorter edge remains unchanged and the structure of the longer edge

includes the shorter edge as an embedded part. As a result, the structure of the shorter

edge can be described by the string u, where u represents a line of length of u = n, and

the structure of the longer edge can be described by the string uvu where v represents a

line segment of length v = l – 2n. Increasing the edge length of the smaller square results

7

in an increase in the length u, and a decrease in the length v. Specifically, as n  ½l,

u  ½l and v  0, and, in Fig. 6b, when n = ½l, v = 0 and the longer edge can be

described by the string uu.

Fig. 6. Part structures resulting from two squares sharing a common edge

8

In Figs 6c-h, n > ½l and the embedded shorter edges overlap resulting in the emergence

of more complicated structures, similar to Fig. 5. When n > ½l embedding the shorter

edge in the longer edge results in a decomposition of both edges, and as n increases the

symbolic descriptions of the resulting part structures can be categorised according to

the following cases:

 In Fig. 6c, ½l < n < ⅔l, the short edge can be described by uvu and the long edge by

uvuvuv. As n  ⅔l, u  ⅓l and v  0

 In Fig. 6d, n = ⅔l, u = ⅓l and v = 0, the short edge can be described by uu and the

long edge by uuu

 In Fig. 6e, ⅔l < n < ¾l, the short edge can be described by uvuvu and the long edge

by uvuvuvu. As n  ¾l, u  ¼l and v  0

 In Fig. 6f, n = ¾l, u = ¼l and v = 0, the short edge can be described by uuu and the

long edge by uuuu

 In Fig. 6g, ¾l < n < ⅘l, the short edge can be described by uvuvuvu and the long

edge by uvuvuvuvu, and as n  ⅘l, u  ⅕l and v  0

 In Fig. 6h, n = ⅘l, u = ⅕l and v = 0, the short edge can be described by uuuu and

the long edge by uuuuu

The pattern identified here continues, tending towards the limiting case where n = l and

the two squares are the same size, with the edges of both squares represented by a single

line. But, as n  l, u  0, and the part structure of the edges gets get finer and finer

with the number of line segments increasing. This structure is always defined according

to line segments of two alternating lengths, and it can always be described as a periodic

palindrome over u and v. In general, the structure of the shorter edge can be described

by the string (uv)ku, and the structure of the longer edge can be described by the string

(uv)k+1u, where u and v represent lines of length u and v, respectively, and k is a positive

integer.

To make this explicit, let W represent a line of length l, A represent a line of length

m, and B represent a line of length n. Embedding B in W, such that W and B retain their

reflective symmetry, gives rise to a palindromic periodic structure, such that

 A = uv

 B = (uv)ku

 W = AB = uv(uv)ku = (uv)k+1u

where u is a line of length u, v is a line of length v and k is given by ⌈n/m⌉–1, where ⌈ ⌉
is the ceiling function. The period of this structure is u + v = m, and given that W = AB

= (uv)k+1u and B = (uv)ku, the lengths l and n can be written

 l = (k+2)u + (k+1)v

 n = (k+1)u + kv

and it follows that

 u = (k+1)n – kl

 v = (k+1)l – (k+2)n

9

For example, if n = ⅝l, then m = ⅜l and k = ⌈5/3⌉–1 = 1, u = ¼l, v = ⅛l. This confirms

observations of Fig. 6c, where the edge of the larger square is composed of three line

segments of length u and two line segment of length v, so that l = 3u + 2v, and the edge

of the smaller square is composed of two line segments of length u and one line segment

of length v, so that n = 2u + v.

3 The structure of two overlapping squares

Using the results summarised in the previous section, it is possible to derive the palin-

dromic periodic structure identified by Stiny [6] for implementing the computation in

Fig. 1. The full computation, including all seven possible shapes, requires three distinct

compositions, illustrated in Fig. 7, which result from recognising the small square, the

large squares, and from rotating the two large squares so that line segments overlap. To

account for these compositions in the part structure of the shape it is necessary that the

edges of the large squares include lines of length equal to the edges of the small square

and the overlap, as embedded parts. In Fig. 7, these lengths are represented by x, y and

p respectively, with y = 2x and p = (2 – √2)x.

Fig. 7. Compositions necessary to implement the shape computation in Fig. 1

In the previous section it was shown that the structure that results from embedding one

line as part of a second line is given by (uv)k+1u. For a line of length x = ½y embedded

in a line of length y, k is given by ⌈x/(y–x)⌉–1 = 0, and the resulting structure is therefore

uxvxux¸ with subscripts used to identify the embedded line. The lengths of line segments

ux and vx are respectively given by

 ux = (k+1)x – ky = x

 vx = (k+1)y – (k+2)x = y – 2x = 0

and the resulting part structure is therefore uxux¸ as illustrated in Fig. 8a. Similarly, for

a line of length p = (2 – √2)x embedded in a line of length y, k is given by ⌈p/(y–p)⌉–1

= 0 and the resulting part structure is therefore upvpup ̧ as illustrated in Fig. 8b. The

lengths of line segments up and vp are respectively given by

 up = (k+1)p – ky = p = (2 – √2)x

 vp = (k+1)y – (k+2)p = y – 2p = 2(√2 – 1)x

10

The structures in Fig. 8 accommodate the three compositions illustrated in Fig. 7, and

in order to implement the full computation in Fig. 1, a structure needs to be identified

that incorporates both of these structures.

Fig. 8. Part structures resulting from compositions in Fig. 7

Representing the structures symbolically, it is required that

 uxux = upvpup

This is shown visually in Fig. 9a, where ux, up and vp are represented by rectangles.

Incorporating uxux in upvpup means that the overall part structure includes two distinct

but equal parts which can be accommodated by separating v into front and back halves,

so that vp = vfvb, as illustrated in Fig. 9b.

Fig. 9. Combinatorial structure, with lines represented by rectangles

This gives ux = upvf and ux = vbup, which means that

 upvf = vbup (1)

Here, two structures are equated which share a common part, up, which is identified as

the prefix of one structure and the suffix of the other. This composition is well under-

stood in the mathematics of combinatorics, and Lyndon and Schützenberger [9] prove

the following Lemma:

Lemma 1. If AB = BC and A ≠ ε, then A = UV, B = (UV)kU and C = VU for some U, V

and some integer k ≥ 0.

In [8] it was shown that the integer k is given by ⌈B/A⌉–1, where ⌈ ⌉ is the ceiling func-

tion, and the lengths of line segments U and V are given by

 U = (k+1)B – k(A+B)

 V = (k+1)(A+B) – (k+2)B

11

From Lemma 1, the structures AB = BC can be decomposed into a finer structure,

(UV)k+1U. This is the source of the periodic palindromic line structures identified by

Stiny [6] and arises due to the reflective symmetry of the line: lines with identified parts

are equal to their mirror images, which themselves contain the same parts. Applying

Lemma 1 to equation (1) gives

 vb = ab

 up = (ab)ka

 vf = ba

and the structure for the edges of the large square is given by (ab)k+1a, with k given by

⌈up/vf⌉–1 = ⌈(2 – √2)x/(√2 – 1)x⌉–1 = 1, and the length of line segments a and b are

given by

 a = (k+1)up – kux = (3 – 2√2)x

 b = (k+1)ux – (k+2)up = (3√2 – 4)x

The resulting structure is ababaababa ̧with b = a√2, confirming the result found by

Stiny [6]. This structure is illustrated in Fig. 10, where Fig. 10a shows the structure as

it applies to the three lines x, y and p, while Fig. 10b shows the structure applied to the

three compositions illustrated in Fig. 7.

Fig. 10. The part structure of two overlapping squares

4 The structure of three overlapping squares

Applying the shape rule in Fig. 1a to the shape in Fig. 2 also gives rise to a network of

shapes in a visual shape computation, as illustrated in Fig. 11. The shapes produced are

stylistically very similar to those in Fig. 1c, but with more squares embedded in the

shape there are more opportunities to apply the rule. The resulting computation is again

finite, involving only twenty-four distinct shapes, and these require five distinct com-

positions of the shape, as illustrated in Fig. 12. Applying the rule to the small square

gives rise to a different composition than applying it to the medium squares, or the large

squares, and further compositions results from rotating the two medium squares or the

two large squares, so that line segments overlap.

12

Fig. 11. The result of an elementary shape computation

13

Fig. 12. Compositions necessary to implement the shape computation in Fig. 11

To account for these compositions in the part structure of the shape it is necessary that

the edges of the large squares include as embedded parts, lines of length equal to the

edges of the small and medium squares as well as the small and large overlap. In Fig.

12, these lengths are represented by x, y, z, p, and q, with y = 2x, z = 2y = 4x,

p = (2 – √2)x, and q = 2p = 2(2 – √2)x. As in the previous section, the part structure

necessary to accommodate the full computation can be explored by considering the

structures that arise from pair-wise combinations of the line segments, x, y, z, p, and q,

with lines embedded as parts of other lines. There are ten different line-in-line combi-

nations to consider, and the resulting part-structures are illustrated in Fig. 13. For the

sake of legibility, these are not drawn to scale.

Fig. 13. Part structures resulting from compositions in Fig. 11

14

The existence of scaling relations between x, y, z, p, and q means that there is similarity

between some of the structures, i.e. they are the same under isotropic scaling. Specifi-

cally, Fig. 13a is similar to Fig. 13f and Fig. 13i; Fig. 13b is similar to Fig. 13g; Fig.

13e is similar to Fig. 13j. This is because z = 2y, y = 2x, and q = 2p. Using these rela-

tions, it is possible to combine structures to accommodate the merger of the different

compositions necessary to implement the computation in Fig. 11. For example, Fig. 14

illustrates two such combinations.

Fig. 14. Example part structures

Fig. 14a combines compositions that enable recognition of the large and medium

squares and the rotation of both large and medium squares. It includes lines of length

y, p and q, embedded as parts of the line of length z, but it does not include the line of

length x which comes from the composition that enables recognition of the small

squares. The resulting structure of z is abaabababaababaababaabababaababa¸ with

b = a√2. Similarly, Fig. 14b combines the compositions that enable recognition of the

large, medium and square squares and the rotation of the medium squares. It includes

lines of length x, y and q, embedded as parts of the line of length z, but it does not

include the line of length p which comes from the composition that enables rotation of

the large squares. The resulting structure is ababaababaababaababa ̧with b = a√2.

In order to accommodate the full computation in Fig. 11, a part structure needs to be

identified that incorporates both structures illustrated in Fig. 14. However, such a mer-

ger is impossible because the two structures are incommensurable. This can be shown

by attempting to merge the structures illustrated in Fig. 13e and Fig. 13f, which would

result in a structure where lines of length x and q are embedded in a line of length y.

Representing the structures symbolically, it is required that

 xx = uvuvu

where, u = 2(3 – 2√2)x and v = 2(3√2 – 4)x. This is illustrated visually in Fig. 15a where

x, u and v are represented by rectangles. Incorporating xx in uvuvu means that the over-

all part structure includes two distinct but equal parts which can be accommodated by

separating u into front and back halves, so that u = ufub, as illustrated in Fig. 15b.

15

Fig. 15. Combinatorial structure, with lines represented by rectangles

This gives x = ufubvuf and x = ubvufub, which means that

 ufubvuf = ubvufub (2)

Here, uf and ub are the same length, and equating the prefixes of ufubvuf and ubvufub

gives uf = ub = u’ and equation (2) reduces to

 u’v = vu’ (3)

Here, two structures are equated which share the same two parts. This composition is

also well understood in the mathematics of combinatorics, and Lyndon and Schützen-

berger [9] prove the following Lemma:

 Lemma 2. If AB = BA then A and B are powers of a common element

Lemma 2 suggests that the structures u’v = vu’ can be decomposed into a finer structure

defined according to a common element, i.e. u’ = ai
 and v = aj for some integers i ≥ 0

and j ≥ 0. For such a structure the lengths of u’ and v are given by ia and ja respectively,

indicating that the ratio v/u’ is a rational number j/i. This is clearly not true because u’

= (3 – 2√2)x and v = 2(3√2 – 4)x and v/u’ = 2√2, which is irrational. There is a contra-

diction, suggesting that there is no structure that will accommodate all the compositions

of the shape illustrated in Fig. 12. This confirms Stiny’s [6] suggestion that there is no

single structure that will support the shape computation in Fig. 11 and supports the

argument that shape compositions cannot be defined prior to carrying out shape explo-

rations.

The impossibility of finding a structure that accommodates the computation in Fig.

11 can be further emphasised by considering the result of applying Lemma 1 to equation

(3). Applying Lemma 1, the structures u’v = vu’ can be decomposed into a finer struc-

ture, to give

 u’ = a1b1

 v = (a1b1)ia1

 u’ = b1a1

for some integer i and line segments a1 and b1. But here we have a1b1 = u’ = b1a1, so

that

 a1b1 = b1a1

Applying Lemma 1 again, a1 and b1 can be decomposed into a finer structure, to give

16

 a1 = a2b2

 b1 = (a2b2)ja2

 a1 = b2a2

for some integer j and line segments a2 and b2. But here we have a2b2 = a1 = b2a2, so

that

 a2b2 = b2a2

and Lemma 1 can be applied again. The same structure continues to reoccur over and

over, as u’ and v are decomposed into finer and finer parts in a process that tends to-

wards the infinitesimals of Newtonian calculus. The process can only end when aω = 0

or bω = 0, for some integer ω. But the lengths of aω and bω are defined following itera-

tion of

 a1 = (i+1)u’ – i(u’+v)

 b1 = (i+1)(u’+v) – (i+2)u’

and consequently are linear combinations of u’ and v. It follows that aω = 0 or bω = 0

only when v = iu’ or v = (i+1)u’, i.e. when the length of v is an integer multiple of the

length of u’, and u’ and v are powers of a common element, as described in Lemma 2.

But, this is not the case here, and it can be shown that for each subdivision bω = aω√2,

and again there is a contradiction.

This argument has explored the possibility that the two part structures in Fig. 14 can

be combined in a single composition. The existence of the contradiction proves that this

is not possible, and consequently also proves that there is no structure that accommo-

dates all the compositions illustrated in Fig. 12, and supports the shape computation

illustrated in Fig. 11. Despite its visual simplicity it is not possible to implement the

computation using a static hierarchy of predefined parts.

5 Discussion

Shape computations can be formulated as shape operations analogous to the conven-

tional computations on word strings composed of vocabulary elements. These shape

computations can transform shapes in a design process. However, word strings and

shapes differ fundamentally. The former have an explicit and well defined composition

of vocabulary elements. The latter lacks an explicit composition. Shapes are not without

compositions, however these require construction.

The history of construction of a shape can provide one possible composition [6]

which will be familiar in parametric CAD. Other compositions arise from the ways that

the shapes themselves are perceived with different views corresponding to different

compositions. Both construction and perception provide compositions. Consider the

example of the shape computation in Fig. 1. This can be viewed as a set (lattice) of

constructions using the rule (Fig. 1a), starting with the shape (Fig. 1b). The construc-

tions in the computation serve to pick out specific parts of the eight maximal lines in

the shape. They also create a set of new shapes (Fig. 1c).

17

A shape can have unlimited possible compositions and one way to consider percep-

tual views is to equate each perception with a specific composition. Any finite set of

parts (covering the whole shape) represents a possible composition and thus a possible

perceptual view. However, two issues arise. First, the sets of parts will be augmented

by sums, differences and intersections of parts. Second where does each composition

come from? Or in other words what is the computation which created that composition?

One approach to addressing these issues, especially the second, is to consider the com-

positions arising from the computations. A question might remain about whether each

composition has a generating shape computation. However, more basically – and the

focus of this paper – there remains a question about whether generating shape compu-

tations necessarily create valid compositions; which among other characteristics will

have finite sets of parts. The compositions of a shape are descriptions of that shape in

terms of its parts. Multiple descriptions of design pose significant problems in applica-

tions of parametric CAD in several areas of design. In Architectural Design and Con-

struction, BIM models require consistency across different descriptions, for example

structural, layout, service and environmental [10]. In Engineering Design two issues

emerge. First, generating and coordinating descriptions in different domains for product

development; for example, product structures (bill of materials), manufacturing speci-

fications, assembly, supply, service and maintenance; present significant issues for

computational support [11, 12]. The second issue is given two distinct descriptions is

there a consistent minimal ‘covering’ description?

The shape computation perspective on compositions (and descriptions) in CAD

which is developed in this paper has revealed, albeit in simple examples, a critical prob-

lem. This is that even elementary shape computations do not necessarily create possible

compositions. This has implications for CAD descriptions such as BoMs (Bills of Ma-

terials). If such descriptions are constructed ad-hoc for specific projects, then each as-

sociated composition can be considered as the result of a shape computation. However,

putting two descriptions together may create a shape computation which does not yield

a valid composition. In other words, although there may be a description in terms of the

computation (and its associated rules), this description will not correspond to a finite

set of parts.

The two squares example (Fig. 1) and its successors (Fig. 2, etc.) provide a striking

example of scaling and its impossibility in simple, identifiable cases in principle. Com-

mon difficulties with scaling are not a question of logical impossibility, as they are for

the successors of the two squares example, but because there is a lack of resources –

material or time – to carry them out practicably. Merging the structures in Fig. 14 proves

to be impossible because they are incompatible in terms of any underlying, finite set of

common, non-zero elements. This highlights the special properties of shape computa-

tions that puts them beyond standard analytical techniques in CAD that require explicit,

finite compositions beforehand – in shape computation, composition is an outcome of

calculating, not a prerequisite – and it suggests both the difficulty of shape computation

and the importance of re-examining algorithmic approaches to design that go beyond

what is common practice today in parametric modelling and BIM. Shape computation

presents a host of challenges both for visual design and for calculating beyond compo-

sition.

18

References

1. Woodburry, R.: Elements of Parametric Design. Routledge, London, (2010)

2. Aish, R.: From Intuition to Precision, in: J. P. Duarte, G. Ducla-Soares, S. A. Zita (eds.),

Digital Design: The Quest for New Paradigms, 23rd eCAADe Conference Proceedings, Lis-

bon, Portugal, 21-24, (2005)

3. Prats, M. and Earl, C. F.: Exploration through drawings in the conceptual stages of product

design, in J. Gero (ed.), Design Computing and Cognition ‘06, Springer, 83–102 (2006)

4. Prats, M., Lim, S., Jowers, I., Garner, S., Chase, S.: Transforming shape in design: Obser-

vations from studies of sketching, Design Studies, 30, 503-520, (2009)

5. Schön, D.A., Wiggins, G.: Kinds of seeing and their functions in designing, Design Studies.,

13, 135-156, (1992)

6. Stiny, G.: Shape: Talking about Seeing and Doing, MIT Press, Cambridge, (2006)

7. Stiny, G.: Shape rules: closure, continuity, and emergence, Environment and Planning B:

Planning and Design, 21, 49-78, (1994)

8. Jowers, I., Earl, C.: Structures in shapes: a perspective from rules and embedding, in Cultural

DNA Workshop 2017, KAIST Graduate School of Culture Technology, Republic of Korea,

(2017)

9. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group. Michigan

Mathematical Journal, 9, 289-298, (1962)

10. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building In-

formation Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley,

New Jersey, (2011)

11. McKay, A., Stiny, G.N., de Pennington, A.: Principles of the definition of design structures,

International Journal of Computer Integrated Manufacturing, 29, 1-14, (2016)

12. Behera, A. K., McKay, A., Chau, H.H., Robinson, M.A.: Embedding multiple design struc-

tures into design definitions: A case study of a collision avoidance robot. In proceedings of

International Design Conference, Dubrovnik, Croatia, 119-128, (2016)

