Task Scheduling for Multi-core and Parallel
Architectures

Quan Chen - Minyi Guo

Task Scheduling
for Multi-core and Parallel
Architectures

Challenges, Solutions and Perspectives

@ Springer

Quan Chen Minyi Guo

Shanghai Jiao Tong University Shanghai Jiao Tong University
Shanghai Shanghai

China China

ISBN 978-981-10-6237-7 ISBN 978-981-10-6238-4 (eBook)

https://doi.org/10.1007/978-981-10-6238-4
Library of Congress Control Number: 2017956334

© Springer Nature Singapore Pte Ltd. 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Computers play an indispensable role in almost all scientific fields and disciplines
such as biomedicine, physical simulations, computational chemistry, and astro-
nautics. In order to fulfill the urgent requirement for high computational capacity
(for example, huge amount of computational capacity is required in big data
analysis), technologies of parallel computing and resource management increas-
ingly grow. Nowadays, multi-core processors have become mainstream in both
research and real-world settings, from warehouse-scale datacenter, personal desk-
tops, laptops, to smartphones, since they demonstrate the superior performance per
watt and the larger computational capacity compared to the traditional single-core
processors. For these widely used parallel systems, a key problem is how to
schedule the tasks to efficiently utilize the hardware, improve the performance, and
guarantee the Quality-of-Service. Because different types of architectures have
totally different features, there is not universal scheduling technique that can work
the best across all these architectures and different applications. Scheduling tech-
niques often need to be altered to match the various architectures (e.g., multi-core,
datacenter, and distributed system) accordingly. For example, for a big data pro-
cessing system that runs on large-scale distributed system, task scheduling should
focus on load balancing and data locality; for a datacenter, the scheduling should
aim to guarantee the quality-of-service of the customer-facing applications (e.g.,
web search).

However, a book that elaborates task scheduling techniques for emerging
complex parallel architectures (e.g., multi-socket architecture, heterogeneous
multi-core architecture, and cloud/big data processing platform) is missing.
Previous published works mainly discuss traditional task scheduling techniques for
generalized parallel systems mathematically. But these techniques suffer from low
performance on the emerging complex parallel architectures. To this end, this book
discusses the state-of-the-art task scheduling techniques that are optimized against
different architectures, and these techniques can be applied in real parallel systems
directly.

In this book, we will mainly introduce these task scheduling techniques in the
scenarios of emerging parallel architectures, including the multi-core architecture,

vi Preface

cloud platform, and accelerator. The book will examine the current challenges in
this topic, and present detailed solutions including algorithms, methods, and per-
spectives. It is well noticed that parallel architectures are becoming more and more
complex. Instances are multi-socket multi-core architecture, asymmetric multi-core
architecture, various parallel accelerators, distributed parallel architecture, etc. For
different types of parallel architectures, in order to utilize the hardware efficiently
and maximize the performance, different techniques have been introduced and
integrated into the traditional task scheduling policy. To this end, we elaborate these
techniques and demonstrate that they can be implemented efficiently for emerging
parallel architectures. This book consists of three main parts: background, task
scheduling techniques, and perspectives.

Part I: Background

In this part, we mainly introduce the background of this book, including the
emerging widely used parallel architectures and classic task scheduling techniques.
This part includes two chapters.

In the first chapter, we do a survey on the emerging parallel architectures
including multi-core architectures, NUMA-enabled multi-core architectures,
asymmetric multi-core architectures, accelerators, cloud platform, and so on.
Besides these parallel architectures, vendors are now producing other architectures.
For instance, Google releases Tensor Processing Unit (TPU), which is a parallel
architecture as well recently.

In the second chapter, we introduce the classic task scheduling policies and
parallel programming environments. Work-sharing and work-stealing are the two
most classic task scheduling policies. In addition, we introduce many parallel
programming environments, such as Apache Hadoop, Spark, MIT Cilk, TBB, X10,
and so on. These task scheduling policies can be applied in various parallel
architectures but may suffer from low performance. In the next part, we introduce
the techniques that optimize the parallel applications on various parallel
architectures.

Part II: Task Scheduling for Various Parallel Architectures

In this part, we introduce techniques that can be used to improve the performance of
applications on the emerging widely used parallel architectures.

In the third chapter, targeting the multi-socket architecture, we will introduce
cache-aware task scheduling policy, which can improve shared cache utilization in
different sockets.

In the fourth chapter, on the NUMA (Non-Uniform Memory Access)-enabled
architecture, the NUMA-aware task scheduling policy will be introduced, which

Preface vii

can reduce remote memory accesses and improve the performance of applications
in consequence.

In the fifth chapter, we introduce workload-aware task scheduling policy, which
is proposed for asymmetric multi-core architecture. On this kind of architecture,
where different cores operate at different speeds, partitioning by the workload can
truly improve the performance.

In the sixth chapter, we introduce asymptotic technique to allocate workload
between CPU and CPU for CPU+GPU heterogeneous parallel architecture. On this
kind of architecture, different applications have different speedup ratios on the GPU
compared with CPU, because the applications have various characteristics. It is not
trivial to find an optimal workload partition between CPU and GPU.

Nowadays, big data analysis requires tremendous amount of computers to pro-
cess the data in parallel. In the seventh chapter, we will introduce several featured
dynamic task scheduling policies that can significantly improve the performance of
big data processing on heterogeneous cloud platforms.

The eighth chapter contains the quality-of-service aware task scheduling policy
for accelerators. Using this policy, it can improve the accelerator utilization.
Moreover, it also guarantees the quality-of-service of latency-critical applications.

Part III: Summary and Perspectives

In this part, we summarize all the previously introduced task scheduling solutions
for parallel architectures, provide our perspectives, and discuss the possibilities of
designing new dynamic task scheduling policies for more other future parallel
architectures. Especially, we give several guidelines of designing new efficient and
effective task scheduling techniques for those newly released parallel architectures.

After reading this book, we expect the readers will have an overview on the
recent progress of task scheduling policies in parallel architectures. And we also
hope the book can help the readers to quickly master the focused issues and opening
problems if they tend to work in this field. In order to understand this book, the
readers are suggested to have some basic knowledge on computer architecture,
multi-core, and parallel processing.

Shanghai, China Quan Chen
September 2017 Minyi Guo

Acknowledgements

This book was partially sponsored by the National Basic Research 973 Program of
China under grant 2015CB352403, the National Natural Science Foundation of
China (NSFC) (61602301). We are grateful for the editor of this book, Dr. XiaoLan
Yao at Springer for her patience and support to make this book possible.

Shanghai, China Quan Chen
September 2017 Minyi Guo

ix

Contents

Part I Background

1 Emerging Parallel Architectures 3
1.1 Parallel Architecture is Dominating the World 3
1.2 Shared Memory Parallel Architecture. 4

1.2.1 Multi-core Architecture. 4
1.2.2 Multi-socket Multi-core Architecture 5
1.2.3 Asymmetric Multi-core Architecture 6
1.3 Distributed Memory Parallel Architecture. 6
1.3.1 Tight-Coupled Distributed Memory Architecture 7
1.3.2 Loose-Coupled Distributed Memory Architecture 7
1.4 Accelerator. 8
141 GPGPU. 9
142 Intel Xeon Phi.......... 10
1.5 Heterogeneous Parallel Architecture. 11
1.6 Chapter Highlights 11
References 12
2 Conventional Task Scheduling Policies 13
2.1 Manual Task Scheduling Policies 14
2.1.1 Message Passing 14
2.1.2 Multi-threading 15
2.2 Automatic Task Scheduling Policies 15
2.2.1 Task Scheduling Policies for Data Parallelism 15
2.2.2 Task Scheduling Policies for Task Parallelism 16
2.3 Parallel Programming Environments 19
2.3.1 Programming Environments for Data Parallelism 19
2.3.2 Programming Environments for Task Parallelism 22

xi

xii

Contents

2.4 Problems in Existing Task Scheduling Systems 24
2.5 Chapter Highlights 24
References 25

Part I Optimized Task Scheduling for Parallel Architectures

3 Work-Stealing for Multi-socket Architecture 29

3.1 Background and Existing Problems 29

3.1.1 The TRICI Problem 30

32 Prior Solutions 32
3.2.1 Scalable Locality-Aware Adaptive Work-Stealing

(SLAW) 32

3.2.2 Multi-Threaded Shepherds MTS) 33

3.2.3 Probability Work-Stealing (PWS) 35

3.2.4 Hierarchical Work-Stealing (HWS) 35

325 CONTROLLED-PDF............. 36

3.3 Cache-Aware Bi-tier Work-Stealing 37

3.3.1 Solution Overviewc.iii.... 37

332 Design OVerview 38

3.4 Cache-Aware Task Graph Partition Policy 40

3.4.1 Full Tree Oriented Partition Policy 40

3.4.2 General Tree Oriented Partition Policy 43

3.5 Bi-tier Work-Stealing Scheduling Policy 47

3.5.1 Work Stealing Algorithm 48

3.5.2 Task Generating Algorithm. 49

3.6 Theoretical Time and Space Bounds 51

3.6.1 Theoretical Bounds for Random Work-Stealing 51

3.6.2 Theoretical Bounds for CAB 52

3.7 Implementation Methodology 54

3.7.1 Compiler Support. 54

3.7.2 Runtime Support 55

3.8 Evaluationof CAB. 55

3.8.1 Performance of CAB-FTO 57

3.8.2 Performance of CAB-GTO 61

39 Summary 69

3.9.1 Chapter Highlights 70

References 71

4 Work-Stealing for NUMA -enabled Architecture. 73

4.1 Chapter Organizationo.uuuniannnn. .. 73

4.2 Background and Existing Problems 73

4.3 Prior SOIUtONSo 75

43.1 Random Pushing 76

4.3.2 Cluster-Aware Hierarchical Stealing (CHS) 77

Contents

4.3.3 Cluster-Aware Load-Based Stealing (CLS)

434 Cluster-Aware Random Stealing (CRS)

435 TATL

436 NUMALB..........

4.3.7 Offline Technique for Unstructured Parallelism

4.4 Design of Locality-Aware Work-Stealing

4.5 Load-Balanced Task Allocator.

4.6 Cache-Friendly Task Graph Partitioner.

4.6.1 Decide the Initial Partitioning

4.6.2 Search for the Optimal Partitioning

4.7 Triple-Level Work-Stealing Policy.

4.8 Theoretical Validation.

4.9 Implementation Methodology

4.10 Performance Evaluation of LAWS

4.10.1 Experimental Platforms.

4.10.2 Performance of LAWS
4.10.3 Effectiveness of Cache-Friendly Task

Graph Partitioner

4.10.4 Scalability of LAWS

4.10.5 Overhead of LAWS

4.10.6 Applicability of LAWS

411 Summary

4.11.1 Chapter Highlights

References

Dynamic Load Balancing for Asymmetric Multi-core
Architecture

5.1 Chapter Organizationuuuuunnnnnn.
5.2 Problem Formulation
5.3 Existing Solutions.
5.3.1 Task Snatching Technique
532 CAMP.
5.33 Bias Scheduling................
5.34 Age-Based Scheduling
5.3.5 Speed-Based Balancing
5.3.6 Scheduling on AMC with Hardware Support.
5.4 Theoretical Ideal Task Scheduling
5.5 A Practical Polynomial Time Solution
5.6 Design of Asymmetric-Aware Task Scheduling
5.6.1 Processing Flow of AATS
5.7 History-Based Task Allocation
5.7.1 Build Task Classes.

5.7.2 Allocate Task Classes to C-Groups

Xiv

7

Contents
5.8 Preference-Based Work-Stealing 136
5.8.1 Scheduling Within a C-Group. 136
5.8.2 Scheduling Among C-Groups 137
5.9 Implementation Methodology of AATS 139
5.10 Performance of AATS 140
5.10.1 Experimental Configurations 140
5.10.2 Performance on Emulated Platform 143
5.10.3 Effectiveness of the Preference-Based

Work-Stealing 145
5.104 Scalability of AATS. 146
5.10.5 Integrating Task-Snatching in AATS 148
SAT Summary 149
5.11.1 Chapter Highlights 150
References 150
Load Balancing for Heterogeneous Parallel Architecture 153
6.1 Background and Existing Problems 153
6.2 Prior Solutions 155
6.2.1 Static Scheduling 155
6.2.2 Quick Scheduling. 156
6.2.3 Split Scheduling. 158
6.24 FinePar 159
6.3 Heterogeneous-Aware Task Scheduling 161
6.4 Comparison of the Scheduling Policies 162
6.5 Performance of Dynamic Scheduling Policies. 164
6.5.1 Experimental Setup 164
6.5.2 Performance........... 165
6.5.3 Effectiveness of Balancing Workload 167

6.5.4 Effectiveness of Predicting the Performance
of GPU 168
6.5.5 Impact of Profiling Granularity 168
6.6 Summary 169
6.6.1 Chapter Highlights 169
References 170
MapReduce for Cloud Computing 173
7.1 Introduction to MapReduce 173
7.1.1 Scheduling Policy in MapReduce 174
7.1.2 Adapting to Other Platforms 175
7.1.3 Variations of MapReduce 176
7.1.4 Existing Problem in Heterogeneous Environment 176
7.2 Prior SOIUtONS 177
7.2.1 Least Progress Policy 177

7.2.2 Longest Approximate Time to End Policy 178

Contents XV

7.2.3 Calculating Progress Score 179
7.24 Problems in Existing Solutions 180
725 Tarazu. 181
7.3 Self-adaptive MapReduce Scheduling 184
73.1 Overview of SAMR 184
7.3.2 Tuning Phase Weights 185
7.3.3 Calculating Progress Score 185
7.34 Identifying Straggler Task. 186
7.3.5 Identifying Slow Node 187
7.3.6 Boosting Straggler Task 188
7.4 Implementation of SAMR 189
7.5 Performance Evaluation 190
7.5.1 Experimental Setup 190
7.5.2 Performance. 191

7.5.3 Effectiveness of Speculative Execution
and Weight Tuning 192
7.54 Parameter Selection in SAMR. 193
T.6 SUMMArY 196
7.6.1 Chapter Highlights 196
References 197
8 QoS-Aware Task Reordering for Accelerators 199
8.1 Background and Existing Problems 199
8.2 Prior Work on Handling Accelerator Co-location 200
82.1 TimeGraph 201
822 GPU-EVR 202
8.2.3 Simultaneous Multi-kernel (SMK). 204
8.24 GPU Thread Preemption. 206
8.3 Real System Investigation on Accelerator Co-location. 206
8.4 Investigation on Priority-Based Scheduling Policy 208

8.5 Design of Task Scheduling Mechanism

on Accelerators. 209
8.6 Case Study: QoS-Aware Task Scheduling on Accelerator 210
8.6.1 Root Causes of Long Tail Latency at Co-location 210
8.6.2 Designof Baymax 211
8.7 Task Duration Modeling in Baymax 212
8.7.1 Task Duration Predictor 212
8.7.2 Selecting Representative Features 213
8.7.3 Low Overhead Prediction Models 214
8.7.4 Minimizing Prediction Error 215
8.7.5 Prediction Accuracy 215
8.8 Scheduling Hand-Written Kernels and Library Calls 218
8.8.1 Breaking down the End-to-end Latency............. 218

8.8.2 Scheduling Policy 219

Xvi Contents

8.9 Scheduling Data Transfer Tasks. 222

8.9.1 Characterizing PCI-e Bandwidth Contention 222

8.9.2 Scheduling Policy 223

8.10 Performance of Baymax 224

8.10.1 Experimental Configuration 224

8.10.2 QoS and Throughput 225

8.10.3 Scheduling Data Transfer Tasks 226

8.10.4 Beyond Pair-Wise Co-locations. 227

8.11 Summary 228

8.11.1 Chapter Highlights 229

References 230
Part II Summary and Discussion

9 Summary and Discussion 235

9.1 Guideline of Scheduling Technique Design 235

9.2 Multi-socket Architecture, 236

9.3 NUMA-Enabled Multi-socket Architecture 236

9.4 Asymmetric Multi-core Architecture 237

9.5 Heterogeneous CPU+GPU Architecture 238

9.6 Heterogeneous Cloud Platform 238

9.7 Non-preemptive Accelerator Architecture 239

Glossary. 241

Acronyms

AATS
AMC
ANN
BIOS
CAB
CF
c-group
CMPI
CPU
D&C
DAG
DDR
DRAM
DT
DVFS
EDC
FIFO
FPGA
FTO
GFS
GPGPU
GTO
HATS
HDFS
HTT
IC

IPA
ISA
KNL
KNN

Asymmetric-Aware Task Scheduling
Asymmetric Multi-Core

Approximate Nearest Neighbor

Basic Input/Output System
Cache-Aware Bi-tier Work-Stealing
Cache-Friendly

Core Group

Cache Misses Per Instruction

Central Processing Unit
Divide-and-Conquer

Directed Acyclic Graph

Dual Data Rate

Dynamic Random Access Memory
Duration Table

Dynamic Voltage and Frequency Scaling
MCDRAM Controller
First-In-First-Out

Field-Programmable Gate Array

Full Tree Oriented

Google File System

General-Purpose Graph Processing Unit
General Tree Oriented
Heterogeneous-Aware Task Scheduler
Hadoop Distributed File System
Hyper-Threading Technology
Inter-Connect

Intelligent Personal Assistant
Instruction Set Architecture

Intel Xeon Phi (codenamed Knights Landing)
K-Nearest Neighbor

Xvii

XViii

LATE
LAWS
LR
MCDRAM
MIMD
MPI
MPS
MSMC
NUMA
PFWS
PMC
QoS
RDD
RPC
SAMR
SIMD
SM
SMC
SOID
SVM
TBB
TCO
TRICI

Longest Approximate Time to End
Locality-Aware Work-Stealing

Linear Regression

Multi-Channel Dynamic Random Access Memory
Multiple-Instruction-Multiple-Data

Message Passing Interface

Multi-Process Service

Multi-Socket Multi-core

Non-Uniform Memory Access

Parent-First Work-Stealing

Performance Monitoring Counter
Quality-of-Service

Resilient Distributed Dataset, defined in Apache Spark
Remote Procedure Call

Self-Adaptive Map-Reduce
Single-Instruction-Multiple-Data

Streaming Multiprocessor

Symmetric Multi-core

Size Of Involved Data

Support Vector Machines

Intel Thread Building Blocks

Total Cost of Ownership

Task Relocation Incurred Cache Interference problem

Acronyms

	Preface
	Part I: Background
	Part II: Task Scheduling for Various Parallel Architectures
	Part III: Summary and Perspectives

	Acknowledgements
	Contents
	Acronyms

