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Preface

Computers play an indispensable role in almost all scientific fields and disciplines
such as biomedicine, physical simulations, computational chemistry, and astro-
nautics. In order to fulfill the urgent requirement for high computational capacity
(for example, huge amount of computational capacity is required in big data
analysis), technologies of parallel computing and resource management increas-
ingly grow. Nowadays, multi-core processors have become mainstream in both
research and real-world settings, from warehouse-scale datacenter, personal desk-
tops, laptops, to smartphones, since they demonstrate the superior performance per
watt and the larger computational capacity compared to the traditional single-core
processors. For these widely used parallel systems, a key problem is how to
schedule the tasks to efficiently utilize the hardware, improve the performance, and
guarantee the Quality-of-Service. Because different types of architectures have
totally different features, there is not universal scheduling technique that can work
the best across all these architectures and different applications. Scheduling tech-
niques often need to be altered to match the various architectures (e.g., multi-core,
datacenter, and distributed system) accordingly. For example, for a big data pro-
cessing system that runs on large-scale distributed system, task scheduling should
focus on load balancing and data locality; for a datacenter, the scheduling should
aim to guarantee the quality-of-service of the customer-facing applications (e.g.,
web search).

However, a book that elaborates task scheduling techniques for emerging
complex parallel architectures (e.g., multi-socket architecture, heterogeneous
multi-core architecture, and cloud/big data processing platform) is missing.
Previous published works mainly discuss traditional task scheduling techniques for
generalized parallel systems mathematically. But these techniques suffer from low
performance on the emerging complex parallel architectures. To this end, this book
discusses the state-of-the-art task scheduling techniques that are optimized against
different architectures, and these techniques can be applied in real parallel systems
directly.

In this book, we will mainly introduce these task scheduling techniques in the
scenarios of emerging parallel architectures, including the multi-core architecture,
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cloud platform, and accelerator. The book will examine the current challenges in
this topic, and present detailed solutions including algorithms, methods, and per-
spectives. It is well noticed that parallel architectures are becoming more and more
complex. Instances are multi-socket multi-core architecture, asymmetric multi-core
architecture, various parallel accelerators, distributed parallel architecture, etc. For
different types of parallel architectures, in order to utilize the hardware efficiently
and maximize the performance, different techniques have been introduced and
integrated into the traditional task scheduling policy. To this end, we elaborate these
techniques and demonstrate that they can be implemented efficiently for emerging
parallel architectures. This book consists of three main parts: background, task
scheduling techniques, and perspectives.

Part I: Background

In this part, we mainly introduce the background of this book, including the
emerging widely used parallel architectures and classic task scheduling techniques.
This part includes two chapters.

In the first chapter, we do a survey on the emerging parallel architectures
including multi-core architectures, NUMA-enabled multi-core architectures,
asymmetric multi-core architectures, accelerators, cloud platform, and so on.
Besides these parallel architectures, vendors are now producing other architectures.
For instance, Google releases Tensor Processing Unit (TPU), which is a parallel
architecture as well recently.

In the second chapter, we introduce the classic task scheduling policies and
parallel programming environments. Work-sharing and work-stealing are the two
most classic task scheduling policies. In addition, we introduce many parallel
programming environments, such as Apache Hadoop, Spark, MIT Cilk, TBB, X10,
and so on. These task scheduling policies can be applied in various parallel
architectures but may suffer from low performance. In the next part, we introduce
the techniques that optimize the parallel applications on various parallel
architectures.

Part II: Task Scheduling for Various Parallel Architectures

In this part, we introduce techniques that can be used to improve the performance of
applications on the emerging widely used parallel architectures.

In the third chapter, targeting the multi-socket architecture, we will introduce
cache-aware task scheduling policy, which can improve shared cache utilization in
different sockets.

In the fourth chapter, on the NUMA (Non-Uniform Memory Access)-enabled
architecture, the NUMA-aware task scheduling policy will be introduced, which
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can reduce remote memory accesses and improve the performance of applications
in consequence.

In the fifth chapter, we introduce workload-aware task scheduling policy, which
is proposed for asymmetric multi-core architecture. On this kind of architecture,
where different cores operate at different speeds, partitioning by the workload can
truly improve the performance.

In the sixth chapter, we introduce asymptotic technique to allocate workload
between CPU and CPU for CPU+GPU heterogeneous parallel architecture. On this
kind of architecture, different applications have different speedup ratios on the GPU
compared with CPU, because the applications have various characteristics. It is not
trivial to find an optimal workload partition between CPU and GPU.

Nowadays, big data analysis requires tremendous amount of computers to pro-
cess the data in parallel. In the seventh chapter, we will introduce several featured
dynamic task scheduling policies that can significantly improve the performance of
big data processing on heterogeneous cloud platforms.

The eighth chapter contains the quality-of-service aware task scheduling policy
for accelerators. Using this policy, it can improve the accelerator utilization.
Moreover, it also guarantees the quality-of-service of latency-critical applications.

Part III: Summary and Perspectives

In this part, we summarize all the previously introduced task scheduling solutions
for parallel architectures, provide our perspectives, and discuss the possibilities of
designing new dynamic task scheduling policies for more other future parallel
architectures. Especially, we give several guidelines of designing new efficient and
effective task scheduling techniques for those newly released parallel architectures.

After reading this book, we expect the readers will have an overview on the
recent progress of task scheduling policies in parallel architectures. And we also
hope the book can help the readers to quickly master the focused issues and opening
problems if they tend to work in this field. In order to understand this book, the
readers are suggested to have some basic knowledge on computer architecture,
multi-core, and parallel processing.

Shanghai, China Quan Chen
September 2017 Minyi Guo
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