Skip to main content

Frequent Deviation-Free Control for Micro-Grid Operation Modes Switching Based on Virtual Synchronous Generator

  • Conference paper
  • First Online:
  • 2549 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 763))

Abstract

The virtual synchronous generator (VSG), which overcomes the impact of the traditional inverter without the moment of inertia to the power grid, improves the stability of the power system and has received extensive attention in Micro-grid. However, since the VSG uses the traditional active power-frequency droop control, there is a frequency deviation in island mode, which will adversely affect the load in Micro-grid. A frequent deviation-free control strategy based on VSG is proposed, i.e., the frequency proportional-integral (PI) module feedback is used to replace the traditional damping module. It will eliminate the frequency deviation of Micro-grid in island mode and realize the Micro-grid inverter to work in multi-mode control. The simulation results show that the effectiveness of the presented VSG based frequent deviation-free control strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yuan, Y., Li, Z., Feng, Y., et al.: Development purposes, orientations and prospects of micro grid in China. Autom. Electr. Power Syst. 34(1), 59–63 (2010)

    Google Scholar 

  2. Lasseter, R.H.: Micro grids and distributed generation. J. Energy Eng. 133(3), 144–149 (2007)

    Article  Google Scholar 

  3. Zhipeng, L., Wanxing, S., Qingchang, Z., et al.: Virtual synchronous generator and its application in micro grid. Proc. CSEE 34(16), 2591–2603 (2014)

    Google Scholar 

  4. Borges, C.L.T., Martins, V.F.: Multistage expansion planning for active distribution networks under demand and distributed generation uncertainties. Int. J. Electr. Power Energy Syst. 36(1), 107–116 (2012)

    Article  Google Scholar 

  5. Li, Y., Vilathgamuwa, D.M., Loh, P.C.: Design, analysis, and real-time testing of a controller for multibus micro-grid system. IEEE Trans. Power Electron. 19(5), 1195–1204 (2004)

    Article  Google Scholar 

  6. Tianwen, Z., Laijun, C., et al.: Technology and prospect of virtual synchronous generator. Autom. Electr. Power Syst. 21, 026 (2015)

    Google Scholar 

  7. Xiang-zhen, Y., Jian-hui, S., Ming, D., et al.: Control strategy for virtual synchronous generator in micro-grid. In: 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 1633–1637. IEEE (2011)

    Google Scholar 

  8. Zhong, Q.C., Weiss, G.: Synchronverters: inverters that mimic synchronous generators. IEEE Trans. Industr. Electron. 58(4), 1259–1267 (2011)

    Article  Google Scholar 

  9. D’Arco, S., Suul, J.A., Fosso, O.B.: Control system tuning and stability analysis of virtual synchronous machines. In: Energy Conversion Congress and Exposition (ECCE), pp. 2664–2671. IEEE (2013)

    Google Scholar 

  10. Dan, Z., Su, J., Wu, B.: Research on control method of micro-grid based on virtual synchronous generator. Autom. Electr. Power 32(4), 59–62 (2010)

    Google Scholar 

  11. Shi, R., Zhang, X., Liu, F., et al.: A dynamic voltage transient suppression control strategy for micro grid inverter. In: 2014 International Power Electronics and Application Conference and Exposition (PEAC), pp. 205–209. IEEE (2014)

    Google Scholar 

  12. Chung, I.Y., Liu, W., Cartes, D.A., et al.: Control methods of inverter-interfaced distributed generators in a micro grid system. IEEE Trans. Industr. Appl. 46(3), 1078–1088 (2010)

    Article  Google Scholar 

  13. Mohamed, Y.A.R.I., El-Saadany, E.F.: Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation micro-grids. IEEE Trans. Power Electron. 23(6), 2806–2816 (2008)

    Article  Google Scholar 

  14. Chen, Y., Hesse, R., Turschner, D., et al.: Improving the grid power quality using virtual synchronous machines. In: 2011 International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), pp. 1–6. IEEE (2011)

    Google Scholar 

  15. Loix, T.: Participation of inverter-connected distributed energy resources in grid voltage control. KU Leuven 6 (2011)

    Google Scholar 

  16. Majumder, R., Chaudhuri, B., Ghosh, A., et al.: Improvement of stability and load sharing in an autonomous micro grid using supplementary droop control loop. IEEE Trans. Power Syst. 25(2), 796–808 (2010)

    Article  Google Scholar 

  17. Meng, J., Wang, Y., Shi, X.C., et al.: Control strategy and parameter analysis of distributed inverter based on virtual synchronous generator. Proc. Electrotech. Soc. 29(12), 1–10 (2014)

    Google Scholar 

  18. Zhang, T., Li, X.: Island/ containing the photovoltaic source network smooth switching control strategy. Power Syst. Technol. 39(4), 904–910 (2015)

    Google Scholar 

  19. Shi, R., Zhang, X., Xu, H., et al.: Seamless switching control strategy of micro-grid based on virtual synchronous generator. Autom. Electr. Power Syst. 40(10), 16–23 (2016)

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (61533010, 61105082), Qing Lan Project of Jiangsu Province (QL2016), ‘1311 Talent Plan’ of Nanjing University of Posts and Telecommunications (NY2013), and Natural Science Foundation of NUPT (Grant No. 215149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Xu, Y., Zhang, T., Yue, D. (2017). Frequent Deviation-Free Control for Micro-Grid Operation Modes Switching Based on Virtual Synchronous Generator. In: Li, K., Xue, Y., Cui, S., Niu, Q., Yang, Z., Luk, P. (eds) Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 763. Springer, Singapore. https://doi.org/10.1007/978-981-10-6364-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6364-0_60

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6363-3

  • Online ISBN: 978-981-10-6364-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics