Skip to main content

Pinched Hysteresis Loop Characteristics of a Fractional-Order HP \(\mathrm{TiO_2}\) memristor

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 762))

Abstract

A memristor is a nonlinear resistor with time memory. Usually, the memory without any loss is an ideal case. Recent studies show that there is a memory loss of the classic HP \(\mathrm{TiO_2}\) linear model, which has memory effect between no memory and ideal memory (complete memory). To describe the memory property, we propose a fractional-order HP \(\mathrm{TiO_2}\) memristor model with the order \(\alpha \) between 0 and 1, and the pinched hysteresis loop characteristics are studied as the fractional-order model under periodic external excitation. Compared with the classic integer-order memristor model, numerical simulations show that the fractional-order derivative \(\alpha \) is also an important parameter effects the pinched hysteresis loop area, the memristor value and the output voltage amplitude evidently and regularly.

This work was sponsored by NSF of China under Grant 11402125, 61673223, NSF of Jiangsu Province of China under Grant BK20140861, NSF of Jiangsu Higher Education Institutions of China under Grant 14KJB130003, and the Nanjing University of Posts and Telecommunications Talent Introduction Foundation under Grant NY213107.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  4. Chua, L.O.: Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)

    Article  Google Scholar 

  5. Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circ. Syst. I, Reg. Pap. 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  6. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824–825 (2012)

    Article  Google Scholar 

  7. Di Ventra, M., Pershin, Y.V.: On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology 24 (2013). Article no. 255201

    Google Scholar 

  8. Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)

    Article  Google Scholar 

  9. Crupi, M., Pradhan, L., Tozer, S.: Modelling neural plasticity with memristors. IEEE Can. Rev. 68, 10–14 (2012)

    Google Scholar 

  10. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1723 (2009)

    Article  Google Scholar 

  11. Niu, D., Chen, Y., Xie, Y.: Low-power dual-element memristor based memory design. In: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 25–30 (2010)

    Google Scholar 

  12. Ho, Y., Huang, G.M., Li, P.: Nonvolatile memristor memory: device characteristics and design implications. In: Proceedings of the 2009 International Conference on Computer-Aided Design, pp. 485–490 (2009)

    Google Scholar 

  13. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muthuswamy, B., Kokate, P.P.: Memristor-based chaotic circuits. IEEE Tech. Rev. 26(6), 415–426 (2009)

    Google Scholar 

  15. Bao, B., Ma, Z., Xu, J., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurcat. Chaos 21(9), 2629–2645 (2011)

    Article  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic, San Diego (1998)

    MATH  Google Scholar 

  17. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic, New York (1974)

    MATH  Google Scholar 

  18. Butzer, P.L.: An introduction to fractional calculus. In: Butzer, P.L., Westphal, U. (eds.) Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  19. Caponetto, R., Dongola, G., Luigi, F., Ivo, P.: Fractional order systems: modeling and control applications. Academic, World Scientific, New Jersey (2010)

    Book  Google Scholar 

  20. Chen, Y., Vinagre, B.M.: A new IIR-type digital fractional order differentiator. Sign. Process. 83(11), 2359–2365 (2011)

    Article  MATH  Google Scholar 

  21. Elwakil, A.S.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circ. Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  22. Freeborn, T.J.: A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Topics Circ. Syst. 3(3), 416–424 (2013)

    Article  Google Scholar 

  23. Radwan, A.G., Moaddy, K., Hashim, I.: Amplitude modulation and synchronization of fractional-order memristor-based Chua’s circuit. Abstract Appl. Anal. (2013). Article no. 758676

    Google Scholar 

  24. Machado, J.T.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18(2), 264–275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Abdelouahab, M.S., Lozi, R., Chua, L.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurcation Chaos 24 (2014). Article no. 1430023

    Google Scholar 

  26. Pu, Y.F., Yuan, X.: Fracmemristor: fractional-order memristor. IEEE Access 4, 1872–1888 (2016)

    Article  Google Scholar 

  27. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  28. Rezazadeh, H., Aminikhah, H., Sheikhani, A.H.R.: Analytical studies for linear periodic systems of fractional order. Math. Sci. 10(1–2), 13–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, J., Yao, L., Zhang, X., Wang, Y., Cui, G.: Generalised mathematical model of memristor. IET Circ. Devices Syst. 10(3), 244–249 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Shi, M., Hu, S. (2017). Pinched Hysteresis Loop Characteristics of a Fractional-Order HP \(\mathrm{TiO_2}\) memristor. In: Yue, D., Peng, C., Du, D., Zhang, T., Zheng, M., Han, Q. (eds) Intelligent Computing, Networked Control, and Their Engineering Applications. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 762. Springer, Singapore. https://doi.org/10.1007/978-981-10-6373-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6373-2_70

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6372-5

  • Online ISBN: 978-981-10-6373-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics