Skip to main content

Evaluation of K-SVD Embedded with Modified \(\ell _{1}\)-Norm Sparse Representation Algorithm

  • Conference paper
  • First Online:
Intelligent Computing, Networked Control, and Their Engineering Applications (ICSEE 2017, LSMS 2017)

Abstract

The K-SVD algorithm aims to find an adaptive dictionary for a set of signals by using the sparse representation optimization and constrained singular value decomposition. In this paper, firstly, the original K-SVD algorithm, as well as some sparse representation algorithms including \(\ell _{0}\)-norm OMP and \(\ell _{1}\)-norm Lasso were reviewed. Secondly, the revised Lasso algorithm was embedded into the K-SVD process and a new different K-SVD algorithms with \(\ell _{1}\)-norm Lasso embedded in (RL-K-SVD algrithm) was established. Finally, extensive experiments had been completed on necessary parameters determination, further on the performance compare of recovery error and recognition for the original K-SVD and RL-K-SVD algorithms. The results indicate that within a certain scope of parameter settings, the RL-K-SVD algorithm performs better on image recognition than K-SVD; the time cost for training sample number is lower for RL-K-SVD in case that the sample number is increased to a certain extend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37, 246–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aharon, M., Elad, M., Bruckstein, A.: \( rm k \)-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  5. Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1697–1704. IEEE (2011)

    Google Scholar 

  6. Zhang, H., Yang, J., Zhang, Y., et al.: Close the loop: joint blind image restoration and recognition with sparse representation prior. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 770–777. IEEE (2011)

    Google Scholar 

  7. Xie, S., Rahardja, S.: An alternating direction method for frame-based image deblurring with balanced regularization. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1061–1064. IEEE (2012)

    Google Scholar 

  8. Studer, C., Baraniuk, R.G.: Dictionary learning from sparsely corrupted or compressed signals. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3341–3344. IEEE (2012)

    Google Scholar 

  9. Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  10. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698. IEEE (2010)

    Google Scholar 

  11. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Sig. Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  12. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Sig. Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  15. Rao, B.D., Kreutz-Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans. Sig. Process. 47(1), 187–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rao, B.D., Engan, K., Cotter, S.F., et al.: Subset selection in noise based on diversity measure minimization. IEEE Trans. Sig. Process. 51(3), 760–770 (2003)

    Article  Google Scholar 

  17. Jung, H., Park, J., Yoo, J., et al.: Radial k-t FOCUSS for high resolution cardiac cine MRI. Magn. Reson. Med. 63(1), 68–78 (2010)

    Google Scholar 

  18. Aad, G., Abat, E., Abbott, B., et al.: Charged-particle multiplicities in pp interactions at measured with the ATLAS detector at the LHC. Phys. Lett. B 688(1), 21–42 (2010)

    Article  Google Scholar 

  19. He, Z., Xie, S., Zhang, L., et al.: A note on Lewicki-Sejnowski gradient for learning overcomplete representations. Neural Comput. 20(3), 636–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Blumensath, T., Davies, M.E.: Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sig. Process. 4(2), 298–309 (2010)

    Article  Google Scholar 

  23. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 61171145, 61671285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, M., Liu, J., Ma, S., Liu, W. (2017). Evaluation of K-SVD Embedded with Modified \(\ell _{1}\)-Norm Sparse Representation Algorithm. In: Yue, D., Peng, C., Du, D., Zhang, T., Zheng, M., Han, Q. (eds) Intelligent Computing, Networked Control, and Their Engineering Applications. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 762. Springer, Singapore. https://doi.org/10.1007/978-981-10-6373-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6373-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6372-5

  • Online ISBN: 978-981-10-6373-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics