Skip to main content

Target Recognition Based on 3-D Sparse Underwater Sonar Sensor Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 463))

Abstract

Underwater target recognition is becoming a hot topic nowadays. In this paper, we propose a maximum likelihood automatic target recognition (ML-ATR) algorithm for both non-fluctuating and fluctuating targets. Theoretical analysis illustrates that our underwater ML-ATR method can tremendously reduce the number of physical sensors while maintain in a good performance. Simulations further validate these theoretical results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Skolnik, M.I.: Introduction to Radar System, 3rd edn. McGraw Hill, New York (2001)

    Google Scholar 

  2. Pal, P., Vaidyanathan, P.P.: Nested arrays: a novel approach to array processing with enhanced degree of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Google Scholar 

  3. Pal, P., Vaidyanathan, P.P.: Sparce sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 773–586 (2011)

    Google Scholar 

  4. Pal, P., Vaidyanathan, P.P.: Nested arrays in two dimensions, part II: application in two dimensional array processing. IEEE Trans. Signal Process. 60(9), 4706–4718 (2012)

    Google Scholar 

  5. Piya, P., Vaidyanathan, P.P.: Nested arrays in two dimensions, part I: geometrical consideration. IEEE Trans. Signal Process. 60(9), 4694–4705 (2012)

    Google Scholar 

  6. Moffet, A.: Minimum-redundancy linear arrays. IEEE Trans. 16(2), 172–175 (1968)

    Google Scholar 

  7. Luria, S.M., Kinney, J.A.S., Weissman, S.: Estimation of size and distance underwarer. Am. J. Psychol. 80, 282–286 (1967)

    Google Scholar 

  8. Liang, Q., Cheng, X.: KUPS: knowledge-based ubiquitous and persistent sensor networks for threat assessment. IEEE Trans. AAES. 44(3), 1060–1069 (2008)

    Google Scholar 

  9. Petre, S., Arye, N.: MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. ASSP 38(12), 2140–2150 (1990)

    Google Scholar 

  10. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  11. Lu, Y., Sang, E.: Underwater target size/shape dynamic analysis for fast target recognition using sonar images. In: 1998 International Symposium on Underwater Technology, pp. 172–175 (1998)

    Google Scholar 

  12. Liang, Q., Cheng, X.: Underwater acoustic sensor networks: target size detection and performance analysis. Ad Hoc Netw. J. 7(4), 803–808 (2009)

    Google Scholar 

  13. Wang, B., Yang, G., Xie, Z., Zhong, W.: Underwater target localization based on DOAs of sensor array network. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS) (2010)

    Google Scholar 

  14. Dogan, M.C., Mendel, J.M.: Application of cumulants to array processing. I. aperture extension and array calibration. IEEE Tran. Signal Process. 43, 1200–1216 (1995)

    Google Scholar 

  15. Chevalier, P., Albera, L., Ferreol, A., Comon, P.: On the virtual array concept for higher order array processing. IEEE Trans. Signal Process. 53, 1254–1271 (2005)

    Google Scholar 

  16. Swerling, P.: Probability of detection for fluctuating targets. IRE Trans. Inf. Theor. 6, 269–308 (1960)

    Google Scholar 

  17. Richards, M.A.: Fundamentals of Radar Signal Processing. McGraw-Hill, New York (2005)

    Google Scholar 

  18. Sowelam, S., Tewfik, A.: Waveform selection in radar target classification. IEEE Trans. Inf. Theor. 46, 1014–1029 (2000)

    Google Scholar 

  19. Stankovic, L., Thayaparan, T., Dakovic, M.: Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter. IEEE Trans. 54, 4332–4342 (2006)

    Google Scholar 

  20. Zhao, F., Wei, L., Chen, H.: Optimal time allocation for wireless information and power transfer in wireless powered communication systems. IEEE Trans. Veh. Technol. 65(3), 1830–1835 (2016)

    Google Scholar 

  21. Zhao, F., Nie, H., Chen, H.: Group buying spectrum auction algorithm for fractional frequency reuses cognitive cellular systems. Ad Hoc Netw. 58, 239–246 (2017)

    Google Scholar 

  22. Zhao, F., Li, B., Chen, H., Lv, X.: Joint beamforming and power allocation for cognitive MIMO systems under imperfect CSI based on game theory. Wireless Pers. Commun. 73(3), 679–694 (2013)

    Google Scholar 

  23. Zhao, F., Sun, X., Chen, H., Bie, R.: Outage performance of relay-assisted primary and secondary transmissions in cognitive relay networks. EURASIP J. Wireless Commun. Networking 2014(1), 60 (2014)

    Google Scholar 

  24. Zhao, F., Wang, W., Chen, H., Zhang, Q.: Interference alignment and game-theoretic power allocation in MIMO heterogeneous sensor networks communications. Signal Process. 126, 173–179 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilian Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, H., Liang, Q. (2019). Target Recognition Based on 3-D Sparse Underwater Sonar Sensor Network. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_310

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_310

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics