Skip to main content

Near Optimal Online Resource Allocation Scheme for Energy Harvesting Cloud Radio Access Network with Battery Imperfections

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 768))

Included in the following conference series:

  • 1050 Accesses

Abstract

In energy harvesting wireless networks, the energy storage devices are usually imperfect. In this paper, we investigate dynamic online resource allocation scheme for Energy Harvesting Cloud Radio Access Network (EH-CRAN) by jointly considering the EH process, data admission, and a practical battery model with finite battery capacity, energy charging and discharging loss. We use Lyapunov optimization technique and design data queue and energy queue to formulate a stochastic optimization problem, and decompose the formulated problem into three subproblems, including data scheduling, power allocation and routing scheduling. Based on the solutions of these subproblems, an online resource allocation algorithm is proposed to maximize the user utility while ensuring the sustainability of RRHs. Furthermore, this algorithm does not require any prior statistical information of the system, e.g., channel state, data arrival and EH process. Both performance analysis and simulation results demonstrate the proposed algorithm can achieve close-to-optimal utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

    Article  Google Scholar 

  2. Checko, A., Christiansen, H.L., Yan, Y., Scolari, L.: Cloud ran for mobile networksa technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015)

    Article  Google Scholar 

  3. Wang, X., Zhang, Y., Chen, T., Giannakis, G.B.: Dynamic energy management for smart-grid-powered coordinated multipoint systems. IEEE J. Sel. Areas Commun. 34(5), 1348–1359 (2016)

    Article  Google Scholar 

  4. Michelusi, N., Badia, L., Carli, R., Corradini, L.: Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Trans. Commun. 61(12), 4934–4947 (2013)

    Article  Google Scholar 

  5. Devillers, B., Gunduz, D.: A general framework for the optimization of energy harvesting communication systems with battery imperfections. J. Commun. Netw. 14(2), 130–139 (2012)

    Article  Google Scholar 

  6. Michelusi, N., Badia, L., Zorzi, M.: Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge. IEEE Trans. Commun. 62(11), 3969–3982 (2014)

    Article  Google Scholar 

  7. Tutuncuoglu, K., Yener, A., Ulukus, S.: Optimum policies for an energy harvesting transmitter under energy storage losses. IEEE J. Sel. Areas Commun. 33(3), 467–481 (2015)

    Article  Google Scholar 

  8. Biason, A., Zorzi, M.: Energy harvesting communication system with SOC-dependent energy storage losses (2016)

    Google Scholar 

  9. Ni, W., Dong, X.: Energy harvesting wireless communications with energy cooperation between transmitter and receiver. IEEE Trans. Commun. 63(4), 1457–1469 (2015)

    Article  MathSciNet  Google Scholar 

  10. Peng, M., Zhang, K., Jiang, J., Wang, J.: Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks. IEEE Trans. Veh. Technol. 64(11), 5275–5287 (2014)

    Article  Google Scholar 

  11. Wang, K., Yang, K., Magurawalage, C.S.: Joint energy minimization and resource allocation in C-RAN with mobile cloud. IEEE Trans. Cloud Comput. 99(1) (2015)

    Google Scholar 

  12. Zhou, Z., Dong, M., Ota, K., Wang, G.: Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-A networks. IEEE Internet Things J. 3(3), 428–438 (2016)

    Article  Google Scholar 

  13. Sun, Y., Li, C., Huang, Y., Yang, L.: Energy-efficient resource allocation in C-RAN with fronthaul rate constraints. In: International Conference on Wireless Communications and Signal Processing, pp. 1–6 (2016)

    Google Scholar 

  14. Zeng, T., Zhen, M.A., Wang, G., Zhong, Z.: Green circuit design for battery-free sensors in cloud radio access network. China Commun. 12(11), 1–11 (2015)

    Google Scholar 

  15. Qiao, G., Leng, S., Zhang, Y., Zeng, M., Xu, L.: Multiple time-scale energy scheduling with energy harvesting aided heterogeneous cloud radio access networks. In: IEEE/CIC International Conference on Communications in China, pp. 1–6 (2016)

    Google Scholar 

  16. Biason, A., Zorzi, M.: On the effects of battery imperfections in an energy harvesting device, pp. 1–7 (2016)

    Google Scholar 

  17. Chalasani, S., Conrad, J.M.: A survey of energy harvesting sources for embedded systems. In: Southeastcon, pp. 442–447 (2008)

    Google Scholar 

  18. Mao, Z., Koksal, C.E., Shroff, N.B.: Near optimal power and rate control of multi-hop sensor networks with energy replenishment: basic limitations with finite energy and data storage. IEEE Trans. Autom. Control 57(4), 815–829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neely, M.J.: Energy optimal control for time-varying wireless networks. IEEE Trans. Inf. Theor. 52(7), 2915–2934 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, L., Neely, M.J.: Utility optimal scheduling in energy-harvesting networks. IEEE/ACM Trans. Netw. 21(4), 1117–1130 (2013)

    Article  Google Scholar 

  21. Boyd, S., Vandenberghe, L., Faybusovich, L.: Convex optimization. IEEE Trans. Autom. Control 51(11), 1859–1859 (2006)

    Article  Google Scholar 

  22. Neely, M.: Stochastic network optimization with application to communication and queueing systems. Syn. Lect. Commun. Netw. 3(1), 211 (2010)

    MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No.71633006, Grant No. 61672540, Grant No. 61379057). This work is supported by The Fund of Postgraduate Student Independent Innovation Project of Central South University (2017zzzts625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Chen .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1

Squaring both sides of the queueing equation in (5), and using the fact that \(([Q-b]^+ +a)^2 \le a^2+b^2+2Q(a-b)\), we can have:

$$\begin{aligned} \frac{1}{2}&\left( [Q_{n,m}(t+1)]^2-[Q_{n,m}(t)]^2\right) \nonumber \\&\le \frac{1}{2}(\theta _{\max }^2+A_{\max }^2) -Q_{n,m}(t)[\sum _{n\,\in \,\mathcal {N}}\sum _{m\,\in \,\mathcal {M}}\theta _{n,m}(t)-A_{n,m}(t)] \end{aligned}$$
(24)

similarly, we can also derive

$$\begin{aligned} \frac{1}{2}&([B_n(t+1)-\varUpsilon _n]^2-[B_n(t)-\varUpsilon _n]^2) \nonumber \\&\le -\frac{1}{2}(1-\eta ^2)[B_n(t)-\varUpsilon _n]^2 +\frac{1}{2}\left[ \frac{\sum _{m\,\in \,\mathcal {M}}P_{n,m}(t)}{\lambda }-\lambda b_n(t)+(1-\eta )\varUpsilon _n\right] \nonumber \\&\le \frac{1}{2}\max \left\{ [\frac{P_{\max }}{\lambda }+(1-\eta )\varUpsilon ]^2,[- \lambda b_{\max }+(1-\eta )\varUpsilon _n]^2\right\} \nonumber \\&-\frac{\eta }{\lambda }(B_n(t)-\varUpsilon _n)[\lambda b_n(t)-(1-\eta )\varUpsilon _n] \end{aligned}$$
(25)

Proof of Theorem 2

We prove Eq. (21) by inductions. Since Eq. (21) holds at \(t=0\), we show that if Eq. (21) holds at slot t, i.e., \(Q_{n,m}(t)\le \gamma _{\max } V+A_{\max }\), then it also holds at slot \(t+1\). If \(Q_{n,m}(t)\le \gamma _{\max } V+A_{\max }\), then it is easy to see that \(Q_{n,m}(t+1)\le V \gamma _{\max } +A_{\max }\) according to the data availability constraint (3). Suppose \(Q_{n,m}(t) \ge V \gamma _{\max }\), we prove Eq. (21) by showing that the objective function of DA problem monotonically increases with \(A_{n,m}(t)\). Therefore, the \(A_{n,m}^*(t)=0\) is the optimal solution for the DA problem. Taking derivative of the objective function in the DA problem w.r.t. \(A_{n,m}(t)\) yields \(Q_{n,m}(t)-V U'(\sum _{n\,\in \,\mathcal {N}}A_{n,m}(t))\). Recalling the \(\gamma _{\max }\) denotes the upper bound of the first derivative of the user utility, it can be found that the derivative of the objective function is larger than 0. Therefore, minimizing the objective function yields \(A_{n,m}^*(t)=0\), which proves Eq. (21).

The proof of Eq. (22) is similar.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Duan, S., Chen, Z., Zhang, D. (2017). Near Optimal Online Resource Allocation Scheme for Energy Harvesting Cloud Radio Access Network with Battery Imperfections. In: Du, D., Li, L., Zhu, E., He, K. (eds) Theoretical Computer Science. NCTCS 2017. Communications in Computer and Information Science, vol 768. Springer, Singapore. https://doi.org/10.1007/978-981-10-6893-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6893-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6892-8

  • Online ISBN: 978-981-10-6893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics