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Abstract. A new kind of geometric invariants is proposed in this pa-
per, which is called affine weighted moment invariant (AWMI). By com-
bination of local affine differential invariants and a framework of global
integral, they can more effectively extract features of images and help to
increase the number of low-order invariants and to decrease the calculat-
ing cost. The experimental results show that AWMIs have good stability
and distinguishability and achieve better results in image retrieval than
traditional moment invariants. An extension to 3D is straightforward.
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1 Introduction

Researchers have found that the geometric deformation of the object, caused
by the change of viewpoint, is an important factor leading to the object to be
misidentified. In order to solve this problem, various methods have been proposed
in order to get image features which are robust to the geometric deformation.
Moments and moment invariants are one of them.

The concepts of moment and moment invariants were first proposed by Hu
in 1962 [I]. He employed the theory of algebraic invariants, which was studied in
19th century[2], and defined geometric moments. Then he constructed seven ge-
ometric moment invariants which are invariant to the similarity transform. This
set of invariants was widely used in various fields of pattern recognition, like [3].
But the similarity transform can’t represent all geometric deformations. When
the distance between the camera and the object is much larger than the size
of the object itself, the geometric deformation of the object can be represented
by the affine transform. The landmark work of affine moment invariants(AMIs)
was proposed by Flusser and Suk in 1993 [4]. They used geometric moments
to construct several low-order and low-degree AMIs, which were more effective
to practical applications, for example, image registration [5]. In order to obtain
more AMIs, Suk and Flusser proposed the graph method which can generate
AMIs of every order and degree [6]. Xu and Li [7] derived moment invariants
in the intuitive way by multiple integrals of invariant geometric primitives like

* Student is the first author.
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distance, area and volume. This method not only simplified the construction of
AMIs, but also made them have a clear geometric meaning. Recently, Li el at.
improved the method of geometric primitives [§]. They found a way to further
simplify geometric primitives and used dot-product and cross-product of vectors
to generate invariants. Meanwhile, researchers were also constantly expanding
the definition of moments. Due to the lack of orthogonality, information redun-
dancy of geometric moments became inevitable and image reconstruction from
geometric moments was very difficult [§]. Therefore, various orthogonal polyno-
mials were used to define new moments. The first one proposed in 1980, Teague
introduced orthogonal Legendre and Zernike moments [9]. Then pseudo-Zernike
moments [I0], Fourier-Mellin moments [II], Chebyshey-Fourier moments [12],
pseudo-Jacobi-Fourier moments [I3] and Gaussian Hermite moments [I4] were
proposed. However, it was very difficult to obtain affine moment invariants of
these orthogonal moments. This weakness greatly limited the use of orthog-
onal moments. Additionally, previous studies have shown that low-order and
low-degree moment invariants have better performance, such as stability, than
high-order and high-degree moment invariants. But the number of low-order and
low-degree moment invariants was very limited. So, its very useful to get more
low-order and low-degree moment invariants.

The studies of local differential invariants are another area, which need to
be concerned. Olver generalized the moving frame method and got differential
invariants for general transformation groups [15]. He defined the affine gradient
by using local affine differential invariants [16]. Ge et al. [I7] presented a local
feature descriptor under color affine transformation by using the affine gradient.
Wang et al. [18] proposed an effective method to derive a special type of affine
differential invariants. Given some functions defined on the plane and affine
group acting on the plane. However, they didn’t explain how to use these local
affine differential invariants in practical applications and how to improve the
numerical accuracy of partial derivatives on discrete image.

In this paper, we use the frame of geometric moments and partial deriva-
tives to define a kind of weighted moments, which can be named as differential
moments(DMs). According to the definition of DMs and local affine differential
invariants, affine weighted moment invariants(AWMIs) can be obtained easily,
which use both global and local information. The experimental results show that
AWMIs have good stability and distinguishability. Also, they can improve the
accuracy of image retrieval.

2 Some Basic Definitions and Theorems

In order to understand the construction frame of AWMIs more clearly, we first
introduce some basic definitions and theorems.
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2.1 The Definition of Geometric Moments
The geometric moment of the image f(x,y) is defined by

mo = [ [ e dndy 1)

o

where p,g = {0,1,2,...}, (p + q) is the order of mp,. In order to eliminate the
effect of translation, central geometric moments are usually used. The central
moment of the order (p + ¢q) is defined by

wa= [ [ @ ort -9y 2)

o0 oo

where
g=T0 g o 3)

2.2 Coordinate Transformation under the Affine Transform

Suppose the image f(z,y) is transformed into another image g(z',y’) by the
affine transform A and the translation T. (z ,y ) is the corresponding point of
(z,y). We can get the following relationship

SU, —A. x LT = (au a2\ (2 4 i1 (4)
Y Y a21 Q22 Y to
where A is a nonsingular matrix.

2.3 The Construction of Affine Moments Invariants

For the image f(z,y), let (z;,y;) and (z;,y;) be two arbitrary points in the
domain of f(z,y). The geometric primitive proposed in [7] can be defined by

Suppose the image f(z,y) is transformed into another image g(x/7yl) by
Eq.(4). (z;,9;), (x;,y;) in g(z ,y ) are the corresponding points of (z;,:), z;, y;)
in f(z,y). Then, there is a relation

S'(i,5) = Al - 8(i, ) (6)

where | A| is the determinant of A. Therefore, using N points (z1,41), (€2, Y2), ..., (TN, YN)
in f(z,y) , Core(N,m;dy,ds,....,dn) can be defined by

Core(N,m;dy,da, ...,dn) = S(0,1,2)...5(0, k,1)...5(0,7, N) (7)

m
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where k < I, r < N, k,l,r € {1,2,..., N}. d; represents the number of point
(4,y;) in all geometric primitives, i = 1,2, ..., N.

Let (27,17, (9, Ya), oy (T, yn ) in g(z,y') be corresponding points of (1, 1),
(x2,Y2), .., (N, yn) in f(x,y). It’s obviously that

C’ore/(N,m; dy,da,.....,dN) = |A|™Core(N,m;dy,da, ....,dN) (8)
where

Core/(N,m;dhdg, o dy) = s’ (0,1, 2)...5/ (o, k,l)...S/(o, r,N) (9)

m

Finally, using Core(N,m;dy,ds, ....,dn), AMIs can be defined by

I(Core(N,m;dy,da, ....,dN))
(T 7 e, y) g o
_JJ .. [ Core(N,m;dy,da, ....,dn) dzidy; ... deydyn
(JJ f(z, y)dzdy)N+m
In [7], Xu and Li proved that Eq.(10) didn’t change when the image was

transformed by Eq.(4). Eq.(10) is the general form of AMIs. In fact, this multiple
integral can be expressed as polynomials of central geometric moments.

AMIs =

(10)

N
a; - Up. q.
[(Core(N,m;dy, d, ..., dn)) _ ; ! 11;[1 bt an

(T J (@, y)dedy) N (uo0) V7

where j represents the number of multiplicative items in this expansion, a;

represents the coefficient of the j-th multiplicative item. In general, N is named

as the degree of Eq.(10), max {p; + ¢;} is named as the order of Eq.(10). They
1

are determined by Core(N,m;dy,ds, ....,dn).

2.4 Local Differential Invariants under the Affine Transform

For the differentiable function f(z,y), Olver [I5] used the contact-invariant
coframe to obtain local differential invariants under the affine transform. The
first and second order local differential invariants of f(z,y) were defined by:

_ o of
ADI = a5 tug, (12)
0f? Of? 0f?
ADIy = 2* = 4+ 20y—— + > >~ 1
2= 82x+ xyamay+y 92y (13)
__ofof? of of, af? of of?
ADIg_xay 0%z (yay x&v)&r@y e 0%y (14)
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af% of? of?

ADL = 522 525 ~ ouay) =
of 2 0f* o 0f 0f af? of 2 0f*
ADIs = (8y) 2 20z by 020y (5 2y (16)

Among them, ADI; and ADI5 are pure differential invariants, which don’t
contain z or y. ADI; and ADI, are absolute differential invariants. ADI3 |
ADI4 and ADI; are relative differential invariants, which meanS

1 ,
ADI; = —ADI,  ADI, =

v —_ADI,  ADI;=——ADI,  (17)

IAP IAP

where ADIi,ADIé,ADIé,ADL/1 and ADIé are local differential invariants of
g(z',y). f(z,y) and g(z,y) satisfy the relationship shown in Eq.(4).

In addition, Olver indicated that differential invariants shown in (12) ~ (16)
were not independent [I5]. The relationship of them was defined by

ADI3 — ADIsADI3 + ADI} ADI; = 0 (18)

3 The Construction Frame of AWMIs

3.1 The Definition of DMs

Definition 1.
Let f(x,y) be the differentiable function. The first-order DMs are defined by:

o= [ [ a-ere-p G Ghyrie i )

where p,q, m,n € N.
The second-order differential moments are defined by:

o= [ - -pr @y
/ / ox ox

ofr  afr _ af .,
(51 ()" (o) )y

where p,q,m,n,r,s,t € N.

Similarly, we can construct higher-order differential moments. But consider-
ing their convenience and the accuracy of calculation, we only define the first-
order and second-order DMs. Compared with the definition of geometric central
moments in Eq(2), DMs are constructed by using the polynomial functions and
derivative functions of f(x,y). Thus, they can represent internal information of
images better.
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3.2 The Construction of AWMIs

Definition 2.
Suppose f(z,y) be the differentiable function, the first-order AWMIs con-
structed by the the first-order DMs are defined by

I(DCore(N,m;dy,da, ....,dN, k1, k2, ... ki)
(f] f(z,y)dzdy)N+m

> a H Dy

T i=1

R i

ADMI, =

where

DCore(N,m;dy,dg, ....;dn, k1, ko, ..., k)
= Core(N,m;dy,dy, ....,dN ) (ADI})* (ADIZ)*2...(ADIY))k~
of of af) (22)

_ . af k1 _J
= Core(N,m,dl,d27....,dN)(xl 81‘1 + U1 ayl) ( a o +y 26y2
of of

(N Brn +yn 8yN)

Note that we assume z; = x; —Z and y; =y; — § (i = 1,2,..., N). Then, we
can get the following theorem.

Theorem 1.

Suppose the image f(z,y) is transformed into another image g(z,y’) by
Eq.(4). (z1,y1)s (T3, Ya)s -es (T, yN) in g(x ,y ) are corresponding points of (x1,y1),
(x2,Y2), ..., (N, yn) in f(x y). The following equation are established.

I(DCOT@(N, m; d17 dg, ceeey dN, k‘l, kz, ceeey k‘N))
([ f(a,y)dady)N+m

, 23
7I(DCOT'6 (N m'dl,dg, dN,kl,kQ,....,kN)) ( )
([ g(z',y")da'dy )N+m
where
DCore (N,m;dy,da, ....,dn, ki, k2, ..., k)
= Core (N,m;dy,ds, ....,dN)(ADIN* (ADI?)* . (ADIN )k~
:Core/(N,m;dl,dg,....,dN)(xlaa + ,1889 ) (z 259 ; 69) 2 (24)

’ 8g ’ 69
"'(xN%'i'yNa )N

The proof of Eq.(23) is the same as that of Eq.(10) proved in [7] .
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3.3 The Instances of AWMIs

In [6], Flusser and Suk proved that there were seven kinds of AMIs when the
degree N < 3 and the order max{p; + ¢;} < 3. They are listed in the Ta-

ble 1. It is important to note that uyg and wg; are always zero. Thus, AMI4
and AMI5 can’t be used as invariants. That means there are only two AMIs,
{AMI2, AMIT}, when the degree N < 3 and the order max {p; + ¢;} < 3.

Table 1. AMIs (N < 3, max {pi +a:} <3)
No. Core AMI
AMII (Ilyz —xzyl) O
AMI2 (l‘lyg — x2y1)2 2u02u20 — 2'LL%1
AMI?) (aclyz — x2y1)3 0
AMI4 |(z1y2 — z2y1)(T1y3 — T3Y1) ugu20 — 2uo1Ui0u11 + Uo2Uio
AMIS |(z1y2 — z2y1)(x1ys — Jvayl)2 UO1U02U30 — 2U01UIIU21 + UOIUI2U20 —
Up2UT0U21 — U03UI0U20 + 2UT0UI1UI2
AMI6 |(w1y2 —x2y1)(T1Yys — 3Yy1) (T2ys — T3Y2) |0
AMIT |(z1y2—221) (193 —2391 ) (T2y3 —T3y2)? [2u02ui2uz0 — 2uo2u3; — 2uo3uiiuszo +

2
2up3u20U21 + 2u11U12U21 — 2UT2U20

But now, we can use Eq.(21) to construct many AWMIs. When N <

3,

max {p; + ¢;} < 3 and max{m; + n;} < 1, there are 8 kinds of DCores which
K3 7
can be constructed AWMIs. They are list in the Table 2.

Table 2. DCores (N < 3, max {p; + ¢;} <3, max{m; +n;} <1)
No. DCore
DCorer |(z1y2 — w2y1)2(az1 o o5 4 i 3y )
DCores |(z1y2 — zay1)* (21 azfi +y15- ay1 )($2 525 T Z/ gff)
DCores |(z1y2 — T2y1)(21ys — 3y1) (T2 2L o + Y25, %yf L) (xs + Y3 ayf)
DCores  |(z1y2 — w21) (2193 — T3y1) (215, by T Uiay, )(@2 L+ y2 5 ) (@ FL + ys 5L
DCores |(z1y2 — z2y1)(z1y3 — T3y1)> (22 Mf 8yf )
DCores |(z1y2 — m291)(v1ys — T3y1)* (23 af + 3 %1/;)
DCorer  |(z1ys — way1)(w1ys — x3y1)* (w2 2L + yo 90 )(xs 6333 g‘y@
DCores |[(z1y2 — z2y1)(x1ys — z3y1) (T2y3 — 333?!2) (;t1 le +un Byl)

In the Table 3, we list AWMIs constructed by Dcores in the Table 2. They
are all constructed by first-order DMs. It is worth noting that we have removed

Dcores of which expansions are always 0 or contain DgJ, D33

. In fact, using a

similar definition to Eq.(23), we can get AWMISs constructed by the second-order
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DMs. But here, we give a new definition. We want to point out that there are
many different methods to construct AWMIs.

Table 3. AWMIs (N < 3, max {pi + ¢} <3, max{m; +n;} <1)

No. AWMI

AWMTIL |D3S2DE + DB D3 + DS3DEY — 2D D — 2D D3 + D2 D)
AWMI? |DPDZ + DD — (Di2)2 — 2DE2D2} + DI2D3L + DI2D3 — (D)2

AWMTI} D8( ) +2D8§D5%D +D (D ) +(D°2) Doo—ZDS?DééDé%—
200 D 1D +2DY2DIA D2 — 2D DE DIt — 2D DI D)+ (D)2 DY

AWMI} |(DS3) D01+(D8 )? D10—2D D D01—2D 1Dg1 D35 +2D93 D1y D3t +
2DP DD — 2D0 DD — 2D0D 0D} + DJ(D¢)? +
2D8%D5%D%8+D (D )+(D“) D10—2D D%éDé%—2Dé%D%éD'f'é+
2D41 D1 DY) +(D% ) D01+(Dio) D} —2D13D4i D) —2D15 D73 D3 +
Di3(D1)?

AWMI? |DJ2D3? D35 — D33 Dt D25 + D§? DOO—D 2D3? Doo—zDng 00+
Dg%DégDOO*DggDé%D —Dg D38D +2D} D(HD —2D6 D1y Dgg+
2D; Dé%D%8+D%éDé%D%8

AWMI?  |Dgs(Dgt)? +2Dg5 Dot D3 + DS (Do ) (D )D0072D8%D33D3%—
2D8%D66D%8+2D8%D%6D88—2D35D 1 D16 —2Dgo D1y D36+ (D15) Do

AWMI] Dg‘f’Dg%D +D$2DEDE +D8%D D3 — 2D Di? D3 +D8%D}3D
2Dgi D Dm—DSSDé%D DSSDé%Dm—DSSD%SDm—D D Dm—
DDD+DDD00—DDD+2DDD+2DDD10—
Dé}D}%D +D DggD +D sDE2 D3 —2D1 Dé%D +D yDI2DEo
2DIs D D3 + 2D42 +2D3§D§8D%5 Di2 D23 D&

AWMI? |—2D83D{D3S + 2D83D3303} + 2DB DA DI — 2D§ED D +
2D8%D33Doo—2D (D”) —2(Dg3) Dm—2(Déé)2D%8+2Dé%Dé%D%é+
2D D2 DS + 2D DS DS — 2D12(D3Y)?

Definition 3.

Suppose f(z,y) is the differentiable function, its AWMIs which are con-
structed by the second-order DMs can be defined by

[[ ADI, f(z,y)dxdy

AWMI, =
2 [ ADI; f(x,y)dzdy

(25)
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According to Eq.(15) and Eq.(16), we can prove that Eq.(30) won’t change
when f(z,y) is transformed by Eq.(4) very easily. Its expansion is defined by

00 00
DOOllO — DOOOO2

AWM, =
D100 — 2D92001 + D010

(26)

3.4 Differentials of Digital Images

In the above, we assume that the function f(z,y) is continuous and differen-
tiable. Actually, general images are discrete two-dimensional functions. So we
have to choose a way to calculate differentials more accurately. Some researchers
have confirmed that employing derivatives of the Gaussian function as filters
to compute derivatives of discrete functions via convolution is a good way [19].
The two-dimensional zeros-mean Gaussian functions and its the first-order and
second-order differentials are defined by

G( ) 1 _124—52 8G X _12+§/2
€T = e o _ = —— 20
YT 902 ox 2ot
8£ = — Y e 122352 0*a = (JjQ _ aQ)e_ 122:;2 (27)
Oy 2ot Ox? 2mo6
PG wy 22 PG (Y —0) 2y
= ——¢ 20 = e 20
Oxdy  2moS Oy? 2mo6

where o is the standard deviation.
Using Eq.(33)~(37) to be convolved with the image function f(z,y), we can
get partial derivatives of f(z,y). For example,

af _ 9G

) (28)

where * means convolution. In this paper, we make o0 = 3.0 and kernel size 9 x 9.

4 Experimental results and analysis

In this section, some experiments are provided to evaluate the theoretical frame-
work proposed in the previous sections. We will test the performance of AWMIs.
In the first subsection, we calculate AWMIs of synthetic images to verify the
stability and discernibility. The second subsection, we test the retrieval ability
of AWMIs on the real image dataset. At the same time, we compare our AWMIS
with several traditional moment invariants.

4.1 Numerical stability and discernibility of AWMIs

We choose 5 kinds of fish pictures from Web page: https://www.igfa.org/
Fish/Fish-Database.aspx. Original images are transformed by 5 different affine
transformations and translations in Table 4.


https://www.igfa.org/Fish/Fish-Database.aspx
https://www.igfa.org/Fish/Fish-Database.aspx
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Table 4. Affine transformations

No. aill a2 azi a2 t1 to
1 0.69 |-0.12 |0.21 1.18 |0 150
2 0.57 0.42 |-0.42 ]0.42 160 280
3 0.60 |-1.03 |0.52 |0.30 |50 15
4 1.00 |-1.00 (0.00 |1.00 (100 50
5 1.50 ]0.00 |0.00 [0.80 (30 10

Thus, 36 images are obtained(512 x 512), which are shown in the Figure.l.
They can be divided into 6 groups, each group contains 6 images.

Al A2 A3 A4 A5 A6

El E2 E3 E4 E5 E6

Fig. 1. Test images, each line contains the original image and transformed versions.

AWMIS{AWMI} ~ AWMI}, AW M]I,} are computed for each image in the
Figure.1, and the results are presented in the Table 5. The error in the Table 5
is defined by

Mazx(invariants) — Min(invariants)
error =

x 100% 29
|[Max(invariants)| + | Min(invariants)| ’ (29)

According to the experimental results, we find that AWMIs have good sta-
bility and distinguishability. Therefore, it proved that the theoretical framework
proposed in the previous sections is correct. Also, it’s obviously that the error of
AW M5 is greater those of others. This indicates that the error caused by the

inaccuracy calculation of the high-order differentials will affect the performance
of AWMIs.
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Table 5. The value of AWMIs
No. |AWMILAWMI? |AWMIS|AWMIL | AWMI? |AWMIS |AWMIT |AWMIS |AW MI?
A1l [2.58¢7° [4.30e7? [0.0011 [1.70e~7 |—2.54e=%—5.43¢78[1.10¢=% [0.0138 [-6.5376
A2 [2.53¢7° |4.34e7° 0.0011 [1.74e™7 |—2.47¢7%—5.24¢781.10e7 % |0.0138 |-7.1118
A3 |2.42¢7° [4.20e7° [0.0011 [1.72¢77 |—2.38¢7%|—4.85¢78[1.08¢7°% [0.0135 |-6.6618
A4 |2.50e7° [4.41e7° [0.0011 [1.79¢™7 |—2.42¢7%—5.00e78[1.05¢7° [0.0137 |-7.7582
A5 |2.54e75 [4.46e7° ]0.0011 [1.79¢™7 |—2.46e7%—5.15¢781.06e7% |0.0138 |-7.7967
A6 |2.57e™® [4.24¢7° [0.0011 [1.67e”7 |—2.59¢7%—5.43¢78[1.10e¢=° [0.0137 |-6.1510
error|3.25% [2.98% [1.59% [3.45% [3.54% [5.68% [2.29% [0.91% [11.80%
Bl [2.54e7° [7.45¢71°{0.0010 [3.10e® [—2.60e~7|—7.01e°|—5.25¢~7]0.0122 [0.3408
B2 |2.52¢75 [7.38¢71°(0.0010 [3.10e7® |—2.54e77|—6.82¢7°|—5.18¢77(0.0121  |0.3294
B3 |2.44e7° [7.10e7'° {0.0010 [3.00e7® |—2.44¢77|—6.40e°|—5.17¢77]0.0120  |0.3349
B4 |2.50e7° [7.66e71°(0.0010 [3.24e78 |—2.54e77|—6.94¢7°|—5.21e77]0.0121 [0.3343
B5 |2.52¢75 [7.91e71°(0.0010 [3.33¢7® |—2.63¢77|—7.25¢7%—5.24¢77(0.0121 |0.3421
B6 [2.53¢7° |7.32¢71°(0.0010 [3.04e% |—2.60e”7|—6.96e °|—5.25¢770.0122  |0.3535
error|2.04%  [5.45% [1.04% [5.11% |3.86% [6.23% [0.79% |0.68% [3.52%
Cl [2.38¢7° [1.72¢77 [0.0012 [8.62¢7% [—1.27¢ %—2.62¢75]—4.93¢7[0.0108 [1.9451
C2 |2.37¢75 [1.65¢7? [0.0012 [8.29¢78 |—1.22¢76/—2.51e78|—4.83¢77/0.0108 |1.7535
C3 |2.27¢7° [1.58¢7° [0.0012 [8.05¢7% |—1.18¢7%—2.34¢78|—4.75¢770.0107 |1.7962
C4 |2.35¢7° [1.77¢7° ]0.0012 [8.93¢78 |—1.29¢7%—2.66e78—4.95¢770.0108 |2.0037
C5 |2.39¢75 [1.84e¢7? [0.0012 [9.24¢78 |—1.34e7%—2.80e78—5.02¢77(0.0108 |2.1434
C6 |2.38¢7° [1.70e7° [0.0012 [8.54e™8 |—1.26e7%—2.57¢78|—4.95¢7]0.0108 [2.0168
error|2.45% |7.55% |1.23% 16.92% |6.47% [8.89% |2.71% |0.72%  [10.00%
D1 [2.29¢7° [5.30e7 10 [8.54¢™F [1.92¢7® [—3.65¢77|—9.92¢7°]—9.37¢8/0.0140 [3.5345
D2 [2.28¢7° |5.13¢7 10 [8.52¢7* [1.86e % |—3.59¢77|—9.72¢°|—9.26e78/0.0140 |3.4078
D3 |2.21e7® [4.91e71° (8.39¢7* [1.81e7® |—3.48¢77|—9.28¢7°|—9.26¢78/0.0139  |3.5029
D4 |2.26e7° [5.44e¢710 [8.48¢7* [1.98¢78 |—3.62¢77|—9.80e7°|—9.28¢780.0140 |3.3824
D5 [2.28¢7° |5.71e 10 [8.53¢7* [2.07e ™% |—3.72¢77|—1.01e 8|—9.43¢78/0.0140 |3.3863
D6 |2.28¢7° [5.19¢710 [8.52¢7* [1.87e® |—3.59¢77|—9.74e7°|—9.47¢780.0140  |3.6232
error|1.84% [7.52% 0.92% [6.92% [3.32% [4.38% [1.12% [0.55% |3.44%
El1 [2.41e7® [1.16e77 [8.73¢™ % [4.15¢® [—9.91e™7|—2.76e~5[3.13¢~" [0.0149 [-5.3282
E2 [2.37¢7® |1.17¢7? [8.67¢™* [4.21e™® |—9.49¢77|—2.62¢83.13¢7 (0.0148 |-6.3237
E3 [2.30e7° [1.16e7° [8.52¢™* [4.27e7® |—9.17¢77|—2.47¢78[3.05¢~7 [0.0147 |-5.8943
E4 |2.34e75 [1.23¢7? [8.61e™* [4.49¢78 |—1.00e76|—2.76e78[3.11e~7 [0.0148 |-6.7204
E5 [2.37¢7® [1.23¢7° [8.66e % [4.47e™% |—1.02¢7%—2.83¢783.09¢"7 |0.0148 |-6.6155
E6 |2.41e7® [1.15¢7° [8.73¢™* |4.14e78 |—1.01e % —2.78¢78|3.12¢77 (0.0149 |-4.8477
error|2.50% |3.23% [1.24% [|4.08% [5.41% [6.73% |1.17% |0.60% |16.19%

4.2 Image retrieval on ALOI dataset

In this section, the performance of AWMIs is tested on ALOI(Amsterdam Li-
brary of Object Images) [20], which contains images of 1000 objects taking from
72 different viewpoints. All images in this dataset have black background. We
choose 1200 images (size of 192 x 144) of 100 objects. Each object contains 12 im-
ages, which are shown in the Figure.2. For comparison, we choose Hu-moments
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Fig. 2. One object contains 12 images, which are taken from different viewpoints.

proposed in [I], AMIs proposed in [6], Zernike moments proposed in [6] dnd
Gaussian-Hermite moments [I5]. For image retrieval, we adopt the modified x>
distance to measure the similarity of two feature vectors [21], which is defined
by

o} — v?

miET .

MD,2(V1,V3) = Z |

where Vi = (v}, vd,...,0l) and Vo = (v}, 0v3,...,v2). We retrieval each image and
draw 5 Precision-Recall curves of AWMIS, AMIs, HMs, Zernike moments and
Gaussian-Hermite moments in Figure.3 to reflect their average levels of image
retrieval.

Precision and Recall are defined by

Precisi | {relevant images} N {retrieved images} |
recision =

31
| {retrieved images} | (31)

| {relevant images} N {retrieved images} |

Recall =

| {relevant images} | (32)
According Figure.3, it has been proved that, as a kind of global feature,
AWMIs have better performance than other methods, such as AMIs. Because
AWMIs combine local features with global features and contain more informa-
tion of images. Meanwhile, orthogonal moments are invariant to the similarity
transformation. So, when the affine transformation is applied to the image, re-
trieval performances of these moments will decrease. Finally, these new AWMIs
greatly increased the number of low-order invariants. It should be noted that we
can achieve better result of image retrieval by combining AWMIs with AMIs.
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Fig. 3. Precision-Recall curves of AWMIS, AMIs, HMs, Zernike moments and
Gaussian-Hermite moments

5 Conclusion

The contributions of this paper mainly include two aspects. Firstly, we extend
the definition of moments,which is named as DMs. In theory, we can construct
DMs containing arbitrary order partial derivatives. Secondly, by using local dif-
ferential invariants and the structural framework of global integral invariants,
we construct AWMIs. This approach greatly expands the number of low-order
affine moments invariants. Meanwhile, it’s important to note that there are many
different ways to construct AWMIs. Thirdly, the final experimental results show
that AWMIs have good stability and distinguishability. They also have better
performance for image retrieval, too.

In the future, we will design more structural formulas to expand the num-
ber of AWMIs. At the same time, it’s also important to explore the method of
improving the accuracy of differential calculation, so that high-order differen-
tial moments can be used. Also, we want to combine the extraction method of
AWMIs with deep-learning, so that the deep-learning network has invariance for
some geometric transformations.
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