Skip to main content

Effectiveness of High Permittivity Spacer for Underlap Regions of Wavy-Junctionless FinFET at 22 nm Node and Scaling Short Channel Effects

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 711))

Abstract

In this work, an attempt has been made to investigate the performance of a new device, Wavy Junctionless FinFET at 22 nm node using low to high permittivity spacer for underlap regions. An alternative V TH extraction method has been demonstrated, which signifies the importance of cannel length at the nanoscale regime. The device layer Silicon film possesses uniform doping profile, where the current is controlled by channel doping and the mobility of charge carriers which account the bulk conduction instead of surface conduction. Due to the scalability of device dimensions, underlap regions are preferred to differentiate the control and the location of dopant atoms along the conduction region and hence this enhances the device performances. The simulation results enlighten the effectiveness of high permittivity of spacer region through performance evaluation. The simulated results exhibit an SS of 64 mV/decade, DIBL of 26 mV/V and I ON/I OFF ratio of 107.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Progress in digital integrated electronics. In: 1975 International Electron Devices Meeting, pp. 11–13 (1975)

    Google Scholar 

  2. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974)

    Article  Google Scholar 

  3. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003)

    Article  Google Scholar 

  4. Roll, G.: Leakage Current and Defect Characterization of Short Channel MOSFETs. Logos Verlag Berlin GmbH (2012)

    Google Scholar 

  5. Taur, T., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, New York (1998)

    Google Scholar 

  6. The International Technology Roadmap for Semiconductors (2015)

    Google Scholar 

  7. Van Dal, M.J.H., Collaert, N., Doornbos, G., Vellianitis, G., Curatola, G., Pawlak, B.J., Duffy, R., Jonville, C., Degroote, B., Altamirano, E., et al.: Highly manufacturable FinFETs with sub-10 nm fin width and high aspect ratio fabricated with immersion lithography. In: 2007 IEEE Symposium on VLSI Technology, pp. 110–111 (2007)

    Google Scholar 

  8. Goel, E., Kumar, S., Singh, B., Singh, K., Jit, S.: Two-dimensional model for subthreshold current and subthreshold swing of graded-channel dual-material double-gate (GCDMDG) MOSFETs. Superlattices Microstruct. 106, 147–155 (2017)

    Article  Google Scholar 

  9. Rawat, G., Kumar, S., Goel, E., Kumar, M., Dubey, S., Jit, S.: Analytical modeling of subthreshold current and subthreshold swing of Gaussian-doped strained-Si-on-insulator MOSFETs. J. Semicond. 35, 84001 (2014)

    Article  Google Scholar 

  10. Subramanian, V., Parvais, B., Borremans, J., Mercha, A., Linten, D., Wambacq, P., Loo, J., Dehan, M., Gustin, C., Collaert, N., et al.: Planar bulk MOSFETs versus FinFETs: an analog/RF perspective. IEEE Trans. Electron Devices 53, 3071–3079 (2006)

    Article  Google Scholar 

  11. Sun, X., Lu, Q., Moroz, V., Takeuchi, H., Gebara, G., Wetzel, J., Ikeda, S., Shin, C., Liu, T.-J.K.: Tri-gate bulk MOSFET design for CMOS scaling to the end of the roadmap. IEEE Electron Device Lett. 29, 491–493 (2008)

    Article  Google Scholar 

  12. Skotnicki, T., Hutchby, J.A., King, T.-J., Wong, H.-S., Boeuf, F.: The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits Devices Mag. 21, 16–26 (2005)

    Article  Google Scholar 

  13. Li, Y., Hwang, C.-H.: Effect of fin angle on electrical characteristics of nanoscale round-top-gate bulk FinFETs. IEEE Trans. Electron Devices 54, 3426–3429 (2007)

    Article  Google Scholar 

  14. El-Mamouni, F., Zhang, E.X., Ball, D.R., Sierawski, B., King, M.P., Schrimpf, R.D., Reed, R.A., Alles, M.L., Fleetwood, D.M., Linten, D.: others: Heavy-ion-induced current transients in bulk and SOI FinFETs. IEEE Trans. Nucl. Sci. 59, 2674–2681 (2012)

    Article  Google Scholar 

  15. Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.-M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    Article  Google Scholar 

  16. Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.-P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94, 53511 (2009)

    Article  Google Scholar 

  17. Colinge, J.-P., Lee, C.-W., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., Nazarov, A.N., Doria, R.T.: Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96, 73510 (2010)

    Article  Google Scholar 

  18. Colinge, J.-P., Ferain, I., Kranti, A., Lee, C.-W., Akhavan, N.D., Razavi, P., Yan, R., Yu, R.: Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions. Sci. Adv. Mater. 3, 477–482 (2011)

    Article  Google Scholar 

  19. Doria, R.T., Pavanello, M.A., Trevisoli, R.D., de Souza, M., Lee, C.-W., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58, 2511–2519 (2011)

    Article  Google Scholar 

  20. Mathew, L., Sadd, M., Kalpat, S., Zavala, M., Stephens, T., Mora, R., Bagchi, S., Parker, C., Vasek, J., Sing, D.: Inverted T channel FET (ITFET)-Fabrication and characteristics of vertical-horizontal, thin body, multi-gate, multi-orientation devices, ITFET SRAM bit-cell operation. A novel technology for 45 nm and beyond CMOS. In: Technical Digest IEEE International Electron Devices Meeting, IEDM, pp. 713–716 (2005)

    Google Scholar 

  21. Zhang, W., Fossum, J.G., Mathew, L.: The ITFET: a novel FinFET-based hybrid device. IEEE Trans. Electron Devices 53, 2335–2343 (2006)

    Article  Google Scholar 

  22. Fossum, J.G., Wang, L.-Q., Yang, J.-W., Kim, S.-H., Trivedi, V.P.: Pragmatic design of nanoscale multi-gate CMOS. In: International Electron Devices Meeting, pp. 613–616 (2004)

    Google Scholar 

  23. Wong, H.-S.: Beyond the conventional transistor. IBM J. Res. Dev. 46, 133–168 (2002)

    Article  Google Scholar 

  24. Lo, S.-H., Buchanan, D.A., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209–211 (1997)

    Article  Google Scholar 

  25. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.-S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)

    Article  Google Scholar 

  26. Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P.V., Greene, W.M., Stork, J.M.C., Yu, Z., Zeitzoff, P.M., Woo, J.C.S.: The impact of high-K gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans. Electron Devices. 46, 1537–1544 (1999)

    Article  Google Scholar 

  27. Tomaszewski, D., Głuszko, G., Łukasiak, L., Kucharski, K., Malesińska, J.: Elimination of the channel current effect on the characterization of MOSFET threshold voltage using junction capacitance measurements. Solid State Electron. 128, 92–101 (2017)

    Article  Google Scholar 

  28. Han, M.-H., Chang, C.-Y., Chen, H.-B., Wu, J.-J., Cheng, Y.-C., Wu, Y.-C.: Performance comparison between bulk and SOI junctionless transistors. IEEE Electron Device Lett. 34, 169–171 (2013)

    Article  Google Scholar 

  29. Colinge, J.P.: The SOI MOSFET: From single gate to multigate. In: Colinge, J.P. (ed.) FinFETs and Other Multi-Gate Transistors, pp. 1–48. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-71752-4_1

    Chapter  Google Scholar 

  30. Ho, B., Sun, X., Shin, C., Liu, T.-J.K.: Design optimization of multigate bulk MOSFETs. IEEE Trans. Electron Devices 60, 28–33 (2013)

    Article  Google Scholar 

  31. Sun, X., Moroz, V., Damrongplasit, N., Shin, C., Liu, T.-J.K.: Variation study of the planar ground-plane bulk MOSFET, SOI FinFET, and trigate bulk MOSFET designs. IEEE Trans. Electron Devices 58, 3294–3299 (2011)

    Article  Google Scholar 

  32. Pradhan, K.P., Sahu, P.K., Rajput, P., Pallempati, M.: Exploration of symmetric high-k spacer (SHS) hybrid FinFET for high performance application. Superlattices Microstruct. 90, 191–197 (2016)

    Article  Google Scholar 

  33. Paz, B.C., Pavanello, M.A., Cassé, M., Barraud, S., Reimbold, G., Faynot, O., Avila-Herrera, F., Cerdeira, A.: From double to triple gate: modeling junctionless nanowire transistors. In: 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pp. 5–8 (2015)

    Google Scholar 

  34. Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Junctionless nanowire transistor (JNT): properties and design guidelines. In: Proceedings of ESSDERC, pp. 357–360 (2010)

    Google Scholar 

  35. Sentaurus TCAD User’s Manual. In: Synopsys Sentaurus Device. Synopsys (2012). http://www.synopsys.com/

  36. Klaassen, D.B.M.: A unified mobility model for device simulation-I. Model equations and concentration dependence. Solid State Electron. 35, 953–959 (1992)

    Article  Google Scholar 

  37. Del Alamo, J., Swirhun, S., Swanson, R.M.: Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon. In: 1985 International Electron Devices Meeting, pp. 290–293 (1985)

    Google Scholar 

  38. Shockley, W., Read Jr., W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)

    Article  MATH  Google Scholar 

  39. Saha, S.: MOSFET test structures for two-dimensional device simulation. Solid State Electron. 38, 69–73 (1995)

    Article  Google Scholar 

  40. Jeon, D.-Y., Park, S.J., Mouis, M., Berthomé, M., Barraud, S., Kim, G.-T., Ghibaudo, G.: Revisited parameter extraction methodology for electrical characterization of junctionless transistors. Solid State Electron. 90, 86–93 (2013)

    Article  Google Scholar 

  41. Saini, G., Choudhary, S.: Improving the subthreshold performance of junctionless transistor using spacer engineering. Microelectronics J. 59, 55–58 (2017)

    Article  Google Scholar 

  42. Sahu, P.K., Mohapatra, S.K., Pradhan, K.P.: Zero temperature-coefficient bias point over wide range of temperatures for single-and double-gate UTB-SOI n-MOSFETs with trapped charges. Mater. Sci. Semicond. Process. 31, 175–183 (2015)

    Article  Google Scholar 

  43. Lee, C.-W., Nazarov, A.N., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., Doria, R.T., Colinge, J.-P.: Low subthreshold slope in junctionless multigate transistors. Appl. Phys. Lett. 96, 102106 (2010)

    Article  Google Scholar 

  44. Trevisoli, R., Doria, R.T., de Souza, M., Pavanello, M.A.: Substrate bias influence on the operation of junctionless nanowire transistors. IEEE Trans. Electron Devices 61, 1575–1582 (2014)

    Article  Google Scholar 

  45. Rios, R., Cappellani, A., Armstrong, M., Budrevich, A., Gomez, H., Pai, R., Rahhal-Orabi, N., Kuhn, K.: Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett. 32, 1170–1172 (2011)

    Article  Google Scholar 

  46. Schroder, D.K.: Semiconductor Material and Device Characterization. Wiley, Hoboken (2006)

    Google Scholar 

  47. Ghibaudo, G.: New method for the extraction of MOSFET parameters. Electron. Lett. 24, 543–545 (1988)

    Article  Google Scholar 

  48. Flandre, D., Kilchytska, V., Rudenko, T.: gm/Id Method for threshold voltage extraction applicable in advanced MOSFETs with nonlinear behavior above threshold. IEEE Electron Device Lett. 31, 930–932 (2010)

    Article  Google Scholar 

  49. Rudenko, T., Barraud, S., Georgiev, Y.M., Lysenko, V., Nazarov, A.: Electrical characterization and parameter extraction of junctionless nanowire transistors. J. Nano Res. 39, 17–33 (2016)

    Article  Google Scholar 

  50. Koley, K., Dutta, A., Syamal, B., Saha, S.K., Sarkar, C.K.: Subthreshold analog/RF performance enhancement of underlap DG FETs with high-k spacer for low power applications. IEEE Trans. Electron Devices 60, 63–69 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vandana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vandana, B., Das, J.K., Mohapatra, S.K., Kaushik, B.K. (2017). Effectiveness of High Permittivity Spacer for Underlap Regions of Wavy-Junctionless FinFET at 22 nm Node and Scaling Short Channel Effects. In: Kaushik, B., Dasgupta, S., Singh, V. (eds) VLSI Design and Test. VDAT 2017. Communications in Computer and Information Science, vol 711. Springer, Singapore. https://doi.org/10.1007/978-981-10-7470-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7470-7_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7469-1

  • Online ISBN: 978-981-10-7470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics