Skip to main content

A Generalized Data Inconsistency Detection Model for Wireless Sensor Networks

  • Conference paper
  • First Online:
  • 366 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 797))

Abstract

A wireless sensor network is one popular candidate for the fundamental backbone of IoT (Internet of Things). Among the key technologies involved in wireless sensor networks, fault detection techniques are indispensable for maintaining the availability of sensor applications. To employ a distributed fault detection scheme, we address a generalized data inconsistency detection model and apply it to recognize data inconsistencies within a wireless sensor network. Then, we formally prove that data inconsistencies can be correctly recognized under the requisite conditions, and we evaluate the robustness of the generalized data inconsistency detection under the probability fault model. Our numerical result indicates that the degree of robustness eventually approaches to 1 if the node reliability is greater than 0.5. Moreover, we show that the tolerable defect rate of the generalized data inconsistency detection is strictly less than \(\frac{1}{2}\), so its defect-free rate must be greater than \(\frac{1}{2}\). All these results definitely imply that the generalized data inconsistency detection is sufficiently robust.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aram, S., Khosa, I., Pasero, E.: Conserving energy through neural prediction of sensed data. J. Wirel. Mobile Netw. Ubiquitous Comput. Dependable Appl. 6(1), 74–97 (2015)

    Google Scholar 

  2. Caruso, A., Albini, L., Maestrini, P.: A new diagnosis algorithm for regular interconnected structures. In: de Lemos, R., Weber, T.S., Camargo, J.B. (eds.) LADC 2003. LNCS, vol. 2847, pp. 264–281. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45214-0_20

    Chapter  Google Scholar 

  3. Caruso, A., Chessa, S., Maestrini, P.: Evaluation of a diagnosis algorithm for regular structures. IEEE Trans. Comput. 51(7), 850–865 (2002)

    Article  Google Scholar 

  4. Caruso, A., Chessa, S., Maestrini, P.: Fault-diagnosis of grid structures. Theoret. Comput. Sci. 290(2), 1149–1174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caruso, A., Chessa, S., Maestrini, P.: Worst-case diagnosis completeness in regular graphs under the \(\cal{PMC}\) model. IEEE Trans. Comput. 56(7), 917–924 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chang, Y., Bhuyan, L.N.: A combinatorial analysis of subcube reliability in hypercube. IEEE Trans. Comput. 44(7), 952–956 (1995)

    Article  MATH  Google Scholar 

  7. Chartrand, G., Ollermann, O.R.: Applied and Algorithmic Graph Theory. McGraw-Hill, New York (1993)

    Google Scholar 

  8. Chen, J.R., Kher, S., Somani, A.: Distributed fault detection of wireless sensor networks. In: Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks (DIWANS 2006), Los Angeles, USA, pp. 65–72. ACM (2006)

    Google Scholar 

  9. Chessa, S., Maestrini, P.: Correct and almost complete diagnosis of processor grids. IEEE Trans. Comput. 50(10), 1095–1102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Das, C.R., Kim, J.: A unified task-based dependability model for hypercube computers. IEEE Trans. Parallel Distrib. Syst. 3(3), 312–324 (1992)

    Article  Google Scholar 

  11. Devipriya, M., Nithya, B., Mala, C.: Hashing based distributed backoff (HBDB) mechanism for IEEE 802.11 wireless networks. J. Internet Serv. Inform. Secur. 5(3), 1–18 (2015)

    Google Scholar 

  12. Fitzgerald, K., Latifi, S.: Reliability modeling and assessment of the star-graph networks. IEEE Trans. Reliab. 51(1), 49–57 (2002)

    Article  Google Scholar 

  13. Hsu, G.H., Tan, J.J.M.: A local diagnosability measure for multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 18(5), 598–607 (2007)

    Article  Google Scholar 

  14. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM 2000), Boston, USA, pp. 56–67. ACM/IEEE (2000)

    Google Scholar 

  15. Jiang, P.: A new method for node fault detection in wireless sensor networks. Sensors 9(2), 1282–1294 (2009)

    Article  Google Scholar 

  16. Kales, P.: Reliability: For Technology, Engineering, and Management. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  17. Kung, T.L., Chen, H.C.: Toward the fault identification method for diagnosing strongly \(t\)-diagnosable systems under the \(\cal{PMC}\) model. Int. J. Commun. Netw. Distributed Syst. 15(4), 386–399 (2015)

    Article  Google Scholar 

  18. Kung, T.L., Hung, C.N.: Estimating the subsystem reliability of bubblesort networks. Theoret. Comput. Sci. 670, 45–55 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kung, T.L., Teng, Y.H., Lin, C.K., Chen, H.C.: A localized fault identification algorithm for mobility management in the strongly \(t\)-diagnosable wireless ad hoc network under the comparison model. EURASIP J. Wirel. Commun. Networking 2016(218), 1–11 (2016)

    Google Scholar 

  20. Kuo, S.Y., Huang, C.Y., Lyu, M.R.: Framework for modeling software reliability using various testing-efforts and fault-detection rates. IEEE Trans. Reliab. 50(3), 310–320 (2001)

    Article  Google Scholar 

  21. Lai, P.L.: A systematic algorithm for identifying faults on hypercube-like networks under the comparison model. IEEE Trans. Reliab. 61(2), 452–459 (2012)

    Article  Google Scholar 

  22. Leu, F.Y., Chen, H.L., Cheng, C.C.: Improving multi-path congestion control for event-driven wireless sensor networks by using TDMA. J. Internet Serv. Inform. Secur. 5(4), 1–19 (2015)

    Google Scholar 

  23. Li, Y., Thai, M.T., Wang, F., Yi, C.W., Wan, P., Du, D.Z.: On greedy construction of connected dominating sets in wireless networks. J. Wirel. Commun. Mobile Comput. 5(8), 927–932 (2005)

    Article  Google Scholar 

  24. Lin, C.K., Kung, T.L., Tan, J.J.M.: Conditional-fault diagnosability of multiprocessor systems with an efficient local diagnosis algorithm under the \(\cal{PMC}\) model. IEEE Trans. Parallel Distrib. Syst. 22(10), 1669–1680 (2011)

    Article  Google Scholar 

  25. Lin, C.K., Kung, T.L., Tan, J.J.M.: An algorithmic approach to conditional-fault local diagnosis of regular multiprocessor interconnected systems under the \(\cal{PMC}\) model. IEEE Trans. Comput. 62(3), 439–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, L., Xu, L., Zhou, S., Wang, D.: The reliability of subgraph in the arrangement graph. IEEE Trans. Reliab. 64(2), 807–818 (2015)

    Article  Google Scholar 

  27. Mánik, M., Gramatová, E.: Boolean formalisation of the \(\cal{PMC}\) model for faulty units diagnosis in regular multi-processor systems. In: Proceedings of the 11th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 1–2. IEEE (2008)

    Google Scholar 

  28. Mánik, M., Gramatová, E.: Diagnosis of faulty units in regular graphs under the \(\cal{PMC}\) model. In: Proceedings of the 12th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 202–205. IEEE (2009)

    Google Scholar 

  29. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad hoc network. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM 1999), Seattle, USA, pp. 151–162. ACM/IEEE (1999)

    Google Scholar 

  30. Robles, T., Alcarria, R., Martin, D., Navarro, M., Calero, R., Iglesias, S., López, M.: An iot based reference architecture for smart water management processes. J. Wirel. Mobile Netw. Ubiquitous Comput. Dependable Appl. 6(1), 4–23 (2015)

    Google Scholar 

  31. Sharma, V., Kumar, R., Rathore, N.: Topological broadcasting using parameter sensitivity-based logical proximity graphs in coordinated ground-flying ad hoc networks. J. Wirel. Mobile Netw. Ubiquitous Comput. Dependable Appl. 6(3), 54–72 (2015)

    Google Scholar 

  32. Sinha, P., Sivakumar, R., Bharghavan, V.: Enhancing ad hoc routing with dynamic virtual infrastrutures. In: Proceedings of 20th Annual Joint Conference of the IEEE Computer and Communication Societies (INFOCOM 2001), Anchorage, AK, pp. 1763–1772. IEEE (2001)

    Google Scholar 

  33. Skarmeta, A.F., Moreno, M.V., Iera, A.: Smart things, big data technology and ubiquitous computing solutions for the future internet of things. J. Wirel. Mobile Netw. Ubiquitous Comput. Dependable Appl. 6(1), 1–3 (2015)

    Google Scholar 

  34. Soh, S., Rai, S., Trahan, J.L.: Improved lower bounds on the reliability of hypercube architectures. IEEE Trans. Parallel Distrib. Syst. 5(4), 364–378 (1994)

    Article  Google Scholar 

  35. Thai, M., Wang, F., Liu, D., Zhu, S., Du, D.Z.: Connected dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)

    Article  Google Scholar 

  36. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. In: Proceedings of 21st Annual Joint Conference of the IEEE Computer and Communication Societies (INFOCOM 2002), New York, USA, pp. 1597–1604. IEEE (2002)

    Google Scholar 

  37. Weng, C.E., Sharma, V., Chen, H.C., Mao, C.H.: PEER: proximity-based energy-efficient routing algorithm for wireless sensor networks. J. Internet Serv. Inform. Secur. 6(1), 47–56 (2016)

    Google Scholar 

  38. Wu, X., Latifi, S.: Substar reliability analysis in star networks. Inf. Sci. 178, 2337–2348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, M., Thulasiraman, K., Xu, X.D.: Conditional diagnosability of matching composition networks under the \(\cal{PMC}\) model. IEEE Trans. Circ. Syst. II Express Briefs 56(11), 875–879 (2009)

    Google Scholar 

  40. Zarezadeh, S., Asadi, M.: Network reliability modeling under stochastic process of component failures. IEEE Trans. Reliab. 62(4), 917–929 (2013)

    Article  Google Scholar 

  41. Zhu, Q., Guo, G., Wang, D.: Relating diagnosability, strong diagnosability and conditional diagnosability of strong networks. IEEE Trans. Comput. 63(7), 1847–1851 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express the most immense gratitude to the anonymous referees for their insightful and constructive comments. This work is supported in part by the Ministry of Science and Technology, Taiwan, Republic of China, under Grants MOST 104-2221-E-468-002 and MOST 104-2221-E-468-003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzu-Liang Kung or Hsing-Chung Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kung, TL., Chen, HC. (2018). A Generalized Data Inconsistency Detection Model for Wireless Sensor Networks. In: You, I., Leu, FY., Chen, HC., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2016. Communications in Computer and Information Science, vol 797. Springer, Singapore. https://doi.org/10.1007/978-981-10-7850-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7850-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7849-1

  • Online ISBN: 978-981-10-7850-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics