Skip to main content

Research on Deep Space Optical Quantum OFDM System Based on Positive Operator Valued Measurement Detection

  • Conference paper
  • First Online:
  • 1079 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 803))

Abstract

The current deep space communication is still based on traditional radio communication. However, features like long distance, weak signal, large unstable delay and high volume data make it increasingly difficult for traditional ways to meet the requirements of deep space communication. In order to improve the efficiency and speed of communication system, reduce the communication cost of aircrafts, accelerate the practical process of deep space optical quantum communication network, an optical quantum communication system based on the all-optical OFDM model is proposed. Meanwhile, based on the expansion in the Fock space, a well-performing algorithm of positive operator valued measurement called least square root quantum detection is presented, aiming at the non-orthogonality of the sending quantum symbol set. Also, several simulations of the system performance and possible influential factors are carried out. The results show that the proposed optical quantum OFDM system has a better performance with the usage of least square root quantum detection. In addition, some influential factors are analyzed and possible solutions are proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. An, J.P., Jin, S., Xu, J., et al.: Development and outlook of deep space communication network protocol. J. Commun. 37(7), 50–61 (2016)

    Google Scholar 

  2. Ye, P.J., Yang, M.F., Peng, J., et al.: Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration. Sci. Sinica 45(3), 229 (2015)

    Google Scholar 

  3. Bai, S., Wang, J.Y., Zhang, L., et al.: Development progress and trends of space optical communications. Laser Optoelectron. Prog. 52(7), 1–14 (2015)

    Google Scholar 

  4. Lai, J.S., Wu, B.B., Tang, R., et al.: Analysis on the application and development of quantum communication. Telecommun. Sci. 32(3) (2016)

    Google Scholar 

  5. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  Google Scholar 

  6. Peev, M., Langer, T., Lorunser, T., et al.: The SECOQC quantum-key-distribution network in Vienna. In: Conference on Optical Fiber Communication - Includes Post Deadline Papers, OFC 2009. IEEE (2009). OThL2

    Google Scholar 

  7. Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD network. In: Quantum Electronics Conference and Lasers and Electro-Optics, pp. 507–509. IEEE (2011)

    Google Scholar 

  8. Wang, K.Y.: The research of the development of quantum communication and facing problems. Telecom World 1, 110–111 (2017)

    Google Scholar 

  9. Zhang, G.L.: The “Beijing-Shanghai Line” of quantum secrecy communication opened at the end of the year. Dual Use Technol. Prod. 13, 21 (2016)

    Google Scholar 

  10. Diao, W.T., Song, X.R., Duan, C.D.: The development of quantum secret communication between the ground and satellite. Space Electron. Technol. 13(1), 83–88 (2016)

    Google Scholar 

  11. Zhou, Z.H., Liu, X.Y., Mei, Y., et al.: Study on transmission performances of 8 × 40 Gbits/s all optical OFDM systems. Study Opt. Commun. (6), 21–24 (2012)

    Google Scholar 

  12. Zhang, H.B., Gao, X., Zhang, J., et al.: 8 × 122 Gbits all optical OFDM fiber transmission system based on optical FFT. J. Optoelectron. Laser (3), 493–499 (2013)

    Google Scholar 

  13. Hillerkuss, D., Winter, M., Teschke, M., et al.: Simple all-optical FFT scheme enabling Tbit/s real-time signal processing. Opt. Express 18(9), 9324–9340 (2010)

    Article  Google Scholar 

  14. Brandt, H.E.: Positive operator valued measure in quantum information processing. Am. J. Phys. 67(67), 434–439 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Bouwmeester, D., Zeilinger, A.: The physics of quantum information: basic concepts. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 34(2), 331–334 (2000)

    Google Scholar 

  16. Sanders, B.C., Bartlett, S.D., Rudolph, T., et al.: Photon-number superselection and the entangled coherent-state representation. Phys. Rev. A 68(4), 4343–4349 (2003)

    Article  Google Scholar 

  17. Pei, C.X., Han, B.B., Zhao, N., et al.: QBER modeling and simulation of QKD in optical fiber with force. Guangzi Xuebao/Acta Photonica Sinica 38(2), 422–424 (2009)

    Google Scholar 

  18. Song, H., Dai, K., Wang, Z.Y., Pan, L.: A quantum algorithm for finding minimum. Comput. Eng. Appl. (14), 37–39 (2003)

    Google Scholar 

  19. Hausladen, P., Jozsa, R., Schumacher, B., et al.: Classical information capacity of a quantum channel. Phys. Rev. A 54(3), 1869–1876 (1996)

    Article  MathSciNet  Google Scholar 

  20. Eldar, Y.C., Forney, G.D.: On quantum detection and the square-root measurement. IEEE Trans. Inf. Theory 47(3), 858–872 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, S.M., Wang, C.L., Zheng, B.Y.: Research on quantum multi-user detection based on SRM algorithm. Sig. Process. 23(3), 365–369 (2007)

    Google Scholar 

  22. Bahrani, S., Razavi, M., Salehi, J.A.: Orthogonal frequency-division multiplexed quantum key distribution. J. Lightwave Technol. 33(23), 4687–4698 (2015)

    Article  Google Scholar 

  23. Yu, Z.Y., Li, M., Lu, P.F.: Photon polarizations in free-space quantum communication. J. Beijing Univ. Posts Telecommun. 36(2), 1–9 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61571135, Shanghai Sailing Program 17YF1429100 and State Key Laboratory of Intense Pulsed Radiation Simulation and Effect Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Zhou, X., Xu, C., Wang, X. (2018). Research on Deep Space Optical Quantum OFDM System Based on Positive Operator Valued Measurement Detection. In: Yu, Q. (eds) Space Information Networks. SINC 2017. Communications in Computer and Information Science, vol 803. Springer, Singapore. https://doi.org/10.1007/978-981-10-7877-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7877-4_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7876-7

  • Online ISBN: 978-981-10-7877-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics