Skip to main content

A Novel Method for Logo Detection Based on Curvelet Transform Using GLCM Features

  • Conference paper
  • First Online:
Book cover Proceedings of 2nd International Conference on Computer Vision & Image Processing

Abstract

Automatic logo detection is a key tool for document retrieval, document recognition, document classification, and authentication. It helps in office automation as it enables the effective identification of source of a document. In this paper, a novel approach for logo detection using curvelet transform is proposed. The curvelet transform is employed for logo detection because of its ability to represent curved singularities efficiently when compared to wavelet and ridgelet transforms. The proposed algorithm consists of five steps, namely segmentation, noncandidate elimination, computation of curvelet coefficients, gray level co-occurrence matrix (GLCM) features extraction, followed by classification using a pretrained support vector machine classifier. The proposed algorithm is tested on a standard dataset, and the performance is compared with the state-of-the-art methods. The results show good improvement in the accuracy when compared with the competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The database is available at http://www.umiacs.umd.edu/~zhugy/tobacco800.html.

References

  1. Agam, G., Argamon, S., Frieder, O., Grossman, D., Lewis, D.: The Complex Document Image Processing (CDIP) Test Collection Project. Illinois Institute of Technology (2006), http://ir.iit.edu/projects/CDIP.html

  2. Ahmed, Z., Fella, H.: Logos extraction on picture documents using shape and color density. In: ISIE IEEE International Symposium on Industrial Electronics, pp. 2492–2496. IEEE (2008)

    Google Scholar 

  3. Arivazhagan, S., Ganesan, L., Kumar, S.T.: Texture classification using curvelet statistical and co-occurrence features. In: 18th International Conference on Pattern Recognition, ICPR, vol. 2, pp. 938–941. IEEE (2006)

    Google Scholar 

  4. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Modeling & Simulation 5(3), 861–899 (2006)

    Google Scholar 

  5. Candes, E.J., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive representation for objects with edges. FPO AE 09499-0039 (1999)

    Google Scholar 

  6. Candès, E.J., Donoho, D.L.: Ridgelets: A key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 357(1760), 2495–2509 (1999)

    Google Scholar 

  7. Candes, E.J., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Tech. rep., DTIC Document (2000)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297 (1995)

    Google Scholar 

  9. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach to connected-component labeling for arbitrary image representations. Journal of the ACM (JACM) 39(2), 253–280 (1992)

    Google Scholar 

  10. Do, M.N., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Transactions on Image Processing 12(1), 16–28 (2003)

    Google Scholar 

  11. Doermann, D.S., Rivlin, E., Weiss, I.: Logo recognition using geometric invariants. In: Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 894–897. IEEE (1993)

    Google Scholar 

  12. Folkers, A., Samet, H.: Content-based image retrieval using fourier descriptors on a logo database. In: Proceedings, 16th International Conference on Pattern Recognition, vol. 3, pp. 521–524 (2002)

    Google Scholar 

  13. Francis, S.V., Sasikala, M., Saranya, S.: Detection of breast abnormality from thermograms using curvelet transform based feature extraction. Journal of medical systems 38(4), 1–9 (2014)

    Google Scholar 

  14. Gonzalez, R.C., et al.: Re woods, digital image processing. Addison–Wesely Publishing Company (1992)

    Google Scholar 

  15. Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    Google Scholar 

  16. Hassanzadeh, S., Pourghassem, H.: Fast logo detection based on morphological features in document images. In: IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), pp. 283–286. IEEE (2011)

    Google Scholar 

  17. Jafarpour, S., Sedghi, Z., Amirani, M.C.: A robust brain mri classification with glcm features. International Journal of Computer Applications 37(12), 1–5 (2012)

    Google Scholar 

  18. Jain, R., Doermann, D.: Logo retrieval in document images. In: Document Analysis Systems (2012)

    Google Scholar 

  19. Legacy: The Legacy Tobacco Document Library (LTDL). University of California, San Francisco (2007), http://legacy.library.ucsf.edu/

  20. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proc. 29th Annual Int. ACM SIGIR Conference, pp. 665–666 (2006)

    Google Scholar 

  21. Li, Z., Schulte-Austum, M., Neschen, M.: Fast logo detection and recognition in document images. In: 20th International Conference on Pattern Recognition (ICPR), pp. 2716–2719. IEEE (2010)

    Google Scholar 

  22. Ma, J., Plonka, G.: The curvelet transform. Signal Processing Magazine, IEEE 27(2), 118–133 (2010)

    Google Scholar 

  23. Ma, J., Plonka, G.: A review of curvelets and recent applications. IEEE Signal Processing Magazine 27(2), 118–133 (2010)

    Google Scholar 

  24. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis & Machine Intelligence (7), 710–732 (1992)

    Google Scholar 

  25. Pham, T.D.: Unconstrained logo detection in document images. Pattern recognition 36(12), 3023–3025 (2003)

    Google Scholar 

  26. Rusinol, M., Llados, J.: Logo spotting by a bag-of-words approach for document categorization. In: 10th International Conference on Document Analysis and Recognition, ICDAR, pp. 111–115. IEEE (2009)

    Google Scholar 

  27. Seiden, S., Dillencourt, M., Irani, S., Borrey, R., Murphy, T.: Logo detection in document images. In: Proceedings of the International Conference on Imaging Science, Systems, and Technology, pp. 446–449 (1997)

    Google Scholar 

  28. Shirdhonkar, M., Kokare, M.: Automatic logo detection in document images. In: IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–3. IEEE (2010)

    Google Scholar 

  29. Shirdhonkar, M., Kokare, M.B.: Automatic logo based document image retrieval. International Journal of Knowledge-based and Intelligent Engineering Systems 19(1), 27–33 (2015)

    Google Scholar 

  30. Starck, J.L., Candes, E., Donoho, D.: The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11(6), 670–684 (Jun 2002)

    Google Scholar 

  31. Wang, H.: Document logo detection and recognition using bayesian model. In: 20th International Conference on Pattern Recognition (ICPR), pp. 1961–1964. IEEE (2010)

    Google Scholar 

  32. Wang, H., Chen, Y.: Logo detection in document images based on boundary extension of feature rectangles. In: 10th International Conference on, Document Analysis and Recognition, ICDAR, pp. 1335–1339. IEEE (2009)

    Google Scholar 

  33. Yager, R.R., Filev, D.P.: Approximate clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics 24(8), 1279–1284 (1994)

    Google Scholar 

  34. Youssef, S.M.: Ictedct-cbir: Integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Computers & Electrical Engineering 38(5), 1358–1376 (2012)

    Google Scholar 

  35. Zhang, J., Tong, L., Wang, L., Li, N.: Texture analysis of multiple sclerosis: a comparative study. Magnetic resonance imaging 26(8), 1160–1166 (2008)

    Google Scholar 

  36. Zhu, G., Doermann, D.: Automatic document logo detection. In: Ninth International Conference on Document Analysis and Recognition, ICDAR, vol. 2, pp. 864–868. IEEE (2007)

    Google Scholar 

  37. Zhu, G., Doermann, D.: Logo matching for document image retrieval. In: 10th International Conference on Document Analysis and Recognition, ICDAR, pp. 606–610. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. S. S. K. R. Naganjaneyulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naganjaneyulu, G.V.S.S.K.R., Sai Krishna, C., Narasimhadhan, A.V. (2018). A Novel Method for Logo Detection Based on Curvelet Transform Using GLCM Features. In: Chaudhuri, B., Kankanhalli, M., Raman, B. (eds) Proceedings of 2nd International Conference on Computer Vision & Image Processing . Advances in Intelligent Systems and Computing, vol 704. Springer, Singapore. https://doi.org/10.1007/978-981-10-7898-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7898-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7897-2

  • Online ISBN: 978-981-10-7898-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics