Skip to main content

How to Efficiently Identify Real and Pseudo 4K Video Contents?

  • Conference paper
  • First Online:
Book cover Digital TV and Wireless Multimedia Communication (IFTC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 815))

  • 1795 Accesses

Abstract

In this paper we address the problem of how to identify real 4K video contents from pseudo ones which were generated using complicated image post-processing technologies such as upsampling or super-resolution (SR). Two individual sets of 22 4K video sequences and 6 popular SR algorithms were collected for conducting this research. Despite the superior performance of current SR methods, they still not reach the perfect level since SR image reconstruction is a severely ill-posed problem and details are hard to be entirely recovered. This implies the reconstructed images based on SR methods do not conform to the natural scene statistics (NSS) model. According to this, we explore the difference of the locally normalized luminances’ distributions between real 4K video sequences and SR-generated pseudo 4K video sequences. It was shown by extensive tests that simple statistical features can be fused to form a good classifier for separating real 4K video contents from pseudo versions. Experimental results demonstrate that the proposed classier consumes less than a quarter of a second for a 4K video frame and the accuracy of classification is beyond 90%. abstract environment.

M. Liu—This work was supported in part by National Natural Science Foundation of China under Grants 61533002 and 61703009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More advanced upsampling or SR methods will be discussed later.

References

  1. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  2. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  4. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: International Conference on Computer Vision, pp. 1920–1927, December 2013

    Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  6. Ruderman, D.L.: The statistics of natural images. Netw. Comput. Neural Syst 5(4), 517–548 (1994)

    Article  MATH  Google Scholar 

  7. Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17(21), 8621–8644 (1997)

    Google Scholar 

  8. Sharifi, K., Leon-Garcia, A.: Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video. IEEE Trans. Circuits Syst. Video Technol. 5(1), 52–56 (1995)

    Article  Google Scholar 

  9. Song, L., Tang, X., Zhang, W., Yang, X., Xia, P.: The SJTU 4K video sequence dataset. In: QoMEX, pp. 34–25, September 2013. http://medialab.sjtu.edu.cn/web4k/index.html

  10. http://ultravideo.cs.tut.fi/#testsequences

  11. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: Proceedings IEEE International Conference on Image Process, vol. 3, pp. 57–60, September 2002

    Google Scholar 

  12. Ferzli, R., Karam, L.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 20(9), 2678–2683 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vu, P., Chandler, D.: A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Process. Lett. 19(7), 423–426 (2012)

    Article  Google Scholar 

  15. Hassen, R., Wang, Z., Salama, M.: Image sharpness assessment based on local phase coherence. IEEE Trans. Image Process. 22(7), 2798–2810 (2013)

    Article  Google Scholar 

  16. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 17(1), 50–63 (2015)

    Article  Google Scholar 

  18. Gu, K., Zhou, J., Qiao, J., Zhai, G., Lin, W., Bovik, A.C.: Noreference quality assessment of screen content pictures. IEEE Trans. Image Process. 26(8), 4005–4018 (2017)

    Article  MathSciNet  Google Scholar 

  19. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: Learning a blind quality evaluation engine of screen content images. Neurocomputing 196, 140–149 (2016)

    Article  Google Scholar 

  20. Gu, K., Zhai, G., Yang, X., Zhang, W.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)

    Article  Google Scholar 

  21. Zhai, G., Wu, X., Yang, X., et al.: A psychovisual quality metric in free-energy principle. IEEE Trans. Image Process. 21(1), 41–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoshen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M., Qiao, J., Wu, L., Zhang, H. (2018). How to Efficiently Identify Real and Pseudo 4K Video Contents?. In: Zhai, G., Zhou, J., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2017. Communications in Computer and Information Science, vol 815. Springer, Singapore. https://doi.org/10.1007/978-981-10-8108-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8108-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8107-1

  • Online ISBN: 978-981-10-8108-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics