Skip to main content

Reverberation Level Recognition by Formants Based on 10-Fold Cross Validation of GMM

  • Conference paper
  • First Online:
Digital TV and Wireless Multimedia Communication (IFTC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 815))

Abstract

Formants can reflect the resonance feature of the vocal tract, which form the spectral components of speech signal, and are closely related to speech intelligibility. Reverberation has an influence on formants, and Reverberation Time (RT) and Direct-to-Reverberant energy Ratio (DRR) are the primary parameters for reverberation strength judgement. Given some selected RT, cluster reverberant speech signals at different DRR by formants in order to achieve the purpose of recognizing reverberation level. Train formants of the reverberant speech signals using Gaussian Mixture Model (GMM), and verify the efficiency via 10-fold cross validation, and choose frequently used MFCC as comparison. Experiments prove formants can be used as an index for reverberation level recognition with satisfactory efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deliyski, D.D.: Acoustic model and evaluation of pathological voice production. In: 3rd Conference on Speech Communication and Technology EUROSPEECH, Berlin, Germany, pp. 1969–1972 (1993)

    Google Scholar 

  2. Abberton, E.R.M., Howard, D.A., Fourcin, A.J.: Laryngographic assessment of normal voice: a tutorial. Clin. Linguist. Phonetics 3, 281–296 (1989)

    Article  Google Scholar 

  3. Benesty, J., Sondhi, M.M., Huang, Y. (eds.): Springer Handbook of Speech Processing. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-49127-9

    Google Scholar 

  4. Stevens, K.N.: Acoustic Phonetics. MIT, Cambridge (1998)

    Google Scholar 

  5. Nábělek, A.K., Letowski, T.R., Tucker, F.M.: Reverberant overlap- and self-masking in consonant identification. J. Acoust. Soc. Am. 86(4), 1259–1265 (1989)

    Article  Google Scholar 

  6. Kokkinakis, K., Loizou, P.C.: The impact of reverberant self-making and overlap-masking effects on speech intelligibility by Cochlear Implant Listeners (L). J. Acoust. Soc. Am. 130(3), 1099–1102 (2011)

    Article  Google Scholar 

  7. Kinoshita, K., Delcroix, M., Yoshioka, T., et al.: The REVERB challenge: a common evaluation framework for dereverberation and recognition of reverberant speech. In: IEEE WASPAA, pp. 1–4 (2013)

    Google Scholar 

  8. Crandell, C.C., Smaldino, J.J.: Classroom acoustics for children with normal hearing and with Hearing Impairment, Language, Speech, and Hearing Services in Schools. Am. Speech Lang. Hear. Assoc. 31, 362–370 (2000)

    Google Scholar 

  9. Hazrati, O., Loizou, P.C.: The combined effects of reverberation and noise on speech intelligibility by cochlear implant listeners. Int. J. Audiol. 51(6), 437–443 (2012)

    Article  Google Scholar 

  10. Niessen, M.E., Krijnders, J.D., Boers, J., et al.: Assessing the reverberation level in speech. In: 19th International Congress on Acoustics, Madrid, 2–7 September 2007

    Google Scholar 

  11. Parada, P.P., Sharma, D., Naylor, P.A.: Non-intrusive estimation of the level of reverberation in speech. In: IEEE ICASSP (2014)

    Google Scholar 

  12. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

    Article  Google Scholar 

  13. Jeub, M., Nelke, C., Beaugeant, C., et al.: Blind estimation of the coherent-to-diffuse energy ratio from noisy speech signals. In: 19th European IEEE Signal Processing Conference, pp. 1347–1351 (2011)

    Google Scholar 

  14. Lehmann, E.A., Johansson, A.M., Nordholm, S.: Reverberation-time prediction method for room impulse responses simulated with the image-source model. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 159–162 (2007)

    Google Scholar 

  15. Ma, S., Xie, X.: Blind estimation of spectral standard deviation from room impulse response for reverberation level recognition based on linear prediction. Commun. Comput. Inform. Sci. 685, 231–241 (2017)

    Article  Google Scholar 

  16. Lee, S., Potamianos, A., Narayanan, S.: Acoustics of childrens speech: developmental changes of temporal and spectral parameters. J. Acoust. Soc. Am. 105(3), 1455–1468 (1999)

    Article  Google Scholar 

  17. Traunmüller, H., Eriksson, A.: the Frequency Range of the Voice Fundamental in the Speech of Male and Female Adults. Also in Perilus (2008)

    Google Scholar 

  18. Peterson, G.E., Barney, H.L.: Control methods used in a study of the vowels. J. Acoust. Soc. Am. 24(2), 175–184 (1952)

    Article  Google Scholar 

  19. Fant, G.: Vocal tract wall effects, losses, and resonance bandwidths. STL-QPSR 13(2–3), 28–52 (1972)

    Google Scholar 

  20. Fant, G.: The vocal tract in your pocket calculator. STL-QPSR 1, 001–019 (1985)

    Google Scholar 

  21. Reynolds, D.: Gaussian Mixture Model. Encyclopedia of Biometrics, pp. 659–663. Springer Science and Business Media, LLC, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5

  22. Dempster, A., Lair, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Xiang, S., Nie, F., Zhang, C.: Learning a Mahalanobis Distance Metric for data clustering and classification. Pattern Recogn. 41(12), 3600–3612 (2008)

    Article  MATH  Google Scholar 

  24. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2(12), pp. 1137–1143. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  25. Chistovich, L.A.: Center Auditory Processing of Peripheral Vowel Spectral. J. Acoust. Soc. Am. 77, 789–805 (1985)

    Article  Google Scholar 

  26. Rabiner, L.R.: Theory and Application of Digital Speech Processing, 1st edn. Pearson (2010). Chapter 9

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. W.-Y. Chan and Prof. S.-Y. Yu for their guidances for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Li, H., Zhang, H., Xie, X. (2018). Reverberation Level Recognition by Formants Based on 10-Fold Cross Validation of GMM. In: Zhai, G., Zhou, J., Yang, X. (eds) Digital TV and Wireless Multimedia Communication. IFTC 2017. Communications in Computer and Information Science, vol 815. Springer, Singapore. https://doi.org/10.1007/978-981-10-8108-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8108-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8107-1

  • Online ISBN: 978-981-10-8108-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics