Skip to main content

Inferring the Most Popular Route Based on Ant Colony Optimization with Trajectory Data

  • Conference paper
  • First Online:
Wireless Sensor Networks (CWSN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 812))

Included in the following conference series:

  • 911 Accesses

Abstract

The development of big data technologies makes it possible to derive valuable information from the history trajectory data. An algorithm is proposed to discover the most popular route from the given source to the given destination in this paper. The region is latticed into regular grids and then the history trajectories are discretized according to the aforementioned grids. Afterwards, the most popular route is determinated by the ant colony optimization method, where the actions of the ants are inspired by the statistics of the history trajectories which lead to the destination or at least near the destination. The grid size and the ant colony parameters are adjustable to fulfil the requirements of the solution precision and the computation complexity. The experiments are performed on the real vehicle trajectory dataset and the results meet our common sense of the popular routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee, P., Ranu, S., Raghavan, S.: Inferring uncertain trajectories from partial observations. In: 2014 IEEE International Conference on Data Mining, pp. 30–39, December 2014

    Google Scholar 

  2. Liu, Y., Ester, M., Qian, Y., Hu, B., Cheung, D.W.: Microscopic and macroscopic spatio-temporal topic models for check-in data. IEEE Trans. Knowl. Data Eng. 29(9), 1957–1970 (2017)

    Article  Google Scholar 

  3. Aryal, A.M., Wang, S.: Discovery of patterns in spatio-temporal data using clustering techniques. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 990–995, June 2017

    Google Scholar 

  4. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1144–1155, April 2012

    Google Scholar 

  5. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 29:1–29:41 (2015)

    Article  Google Scholar 

  6. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 900–911, April 2011

    Google Scholar 

  7. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 26(1), 29–41 (1996)

    Article  Google Scholar 

  8. Zheng, Y., Zhou, X.: Computing With Spatial Trajectories. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1629-6

    Book  Google Scholar 

  9. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data SIGMOD 2007, NY, USA, pp. 593–604. ACM, New York (2007)

    Google Scholar 

  10. Lee, J.G., Han, J., Li, X., Gonzalez, H.: Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering. Proc. VLDB Endow. 1(1), 1081–1094 (2008)

    Article  Google Scholar 

  11. Yao, D., Zhang, C., Zhu, Z., Huang, J., Bi, J.: Trajectory clustering via deep representation learning. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3880–3887, May 2017

    Google Scholar 

  12. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2009, NY, USA, pp. 637–646. ACM, New York (2009)

    Google Scholar 

  13. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 70–79, April 2008

    Google Scholar 

  14. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD 2004, NY, USA, pp. 611–622. ACM, New York (2004)

    Google Scholar 

  15. Chen, C.C., Chiang, M.F.: Trajectory pattern mining: exploring semantic and time information. In: 2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 130–137, November 2016

    Google Scholar 

  16. Chen, C.C., Kuo, C.H., Peng, W.C.: Mining spatial-temporal semantic trajectory patterns from raw trajectories. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 1019–1024 November 2015

    Google Scholar 

  17. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Mouratidis, K., Sellis, T.: On-line discovery of hot motion paths. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology, EDBT 2008, NY, USA, pp. 392–403. ACM, New York (2008)

    Google Scholar 

  18. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73540-3_25

    Chapter  Google Scholar 

  19. Wei, L.Y., Zheng, Y., Peng, W.C.: Constructing popular routes from uncertain trajectories. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, NY, USA, pp. 195–203. ACM, New York (2012)

    Google Scholar 

  20. Li, Y., Jin, D., Hui, P., Su, L., Zeng, L.: Revealing contact interval patterns in large scale urban vehicular ad hoc networks. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 2012, NY, USA, pp. 299–300. ACM, New York (2012)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (61370191) and the Fundamental Research Funds for the Central Universities (FRFBR-16-024a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huangfu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Huangfu, W., Hu, X. (2018). Inferring the Most Popular Route Based on Ant Colony Optimization with Trajectory Data. In: Li, J., et al. Wireless Sensor Networks. CWSN 2017. Communications in Computer and Information Science, vol 812. Springer, Singapore. https://doi.org/10.1007/978-981-10-8123-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8123-1_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8122-4

  • Online ISBN: 978-981-10-8123-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics