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Abstract—Semantic parsing has emerged as a significant and
powerful paradigm for natural language interface and question
answering systems. Traditional methods of building a semantic
parser rely on high-quality lexicons, hand-crafted grammars
and linguistic features which are limited by applied domain or
representation. In this paper, we propose a general approach to
learn from denotations based on Seq2Seq model augmented with
attention mechanism. We encode input sequence into vectors and
use dynamic programming to infer candidate logical forms. We
utilize the fact that similar utterances should have similar logical
forms to help reduce the searching space. Under our learning
policy, the Seq2Seq model can learn mappings gradually with
noises. Curriculum learning is adopted to make the learning
smoother. We test our method on the arithmetic domain which
shows our model can successfully infer the correct logical forms
and learn the word meanings, compositionality and operation
orders simultaneously.

Index Terms—Seq2Seq; Semantic parsing; Weak supervision

I. INTRODUCTION

The problem of learning a semantic parser has been re-

ceiving significant attention. Semantic parsers map natural

language into a logical form that can be executed on a knowl-

edge base and return an answer (denotation). The early works

use logical forms as supervision [1]–[4], given a set of input

sentences and their corresponding logical forms, learning a

statistical semantic parser by weighting a set of rules mapping

lexical items and syntactic patterns to their logical forms.

Given an input, these rules are applied recursively to derive

the most probable logical form. However, the tremendous

labor needed for annotating logical forms has turned the trend

to weak supervision − using denotation of logical forms

as the training target. It has been successfully applied in

different fields including question-answering [5]–[8] and robot

navigation [9]. All these works need hand-crafted grammars

that are crucial in semantic parsing but pose an obstacle for

generalization. Wang et al. [10] build semantic parsers in 7

different domains and hand engineer a separate grammar for

each domain.

The rise of Seq2Seq model [11] provides an alternative

method to tackle the mapping problem and no more manual

grammars are needed. The ability to deal with sequences with

changeable length as input and/or output has translated this

model into applications including machine translation [11],

[12], syntactic parsing [13], and question answering [14]. All

of these work do not need hand-crafted grammars and are so-

called end-to-end learning. But they do not resolve the problem

of supervision by denotation, which makes one step further

and needs logic reasoning and operation. Our model adopts

the encoder-decoder framework and tries to use denotation

as the target of supervised learning. We take the advantage

of the Seq2Seq model’s ability of tackling input/output with

different length and grammar-free form to learn the mappings

from natural language to logical forms. Our main focus is to

infer logical forms from denotations in a generalizable way.

We wish to add minimal extra constraints or manual features,

so that it can be applied to other domains. For now, we can not

infer correct logical forms all the time but we prove that the

Seq2Seq model is capable of learning with noises in training

data and the curriculum learning form mitigates this effect.

A problem of weak supervision is the search of the con-

sistent logical forms when only denotation is available. The

number of logical forms grows exponentially as their size

increases and inferring from denotations inevitably induces

spurious logical forms − those that do not represent the orig-

inal sentence semantics but get the correct answer accidently

[15]. To control the searching space, previous works relied

on restricted sets of rules which limits expressivity and are

possible to rule out the correct logical form. Instead, we utilize

dynamic programming to construct the candidate logical form

set with an extra base case set to filter all the candidates, and

use the ongoing training Seq2Seq model to determine the best

one. In this way, we can maintain the expressivity and train

our model iteratively by feeding the suggested best logical

form back to our model. Consequently, a right pick results in

a positive learning, which allows our model to put a higher

probability on the correct logical form over others and leads

to the desired mapping over training.

We evaluate our model on arithmetic domain through a

toy example. And the model is capable of translating row

sentences into mathematical equations in structured tree form

and returning the answer directly. We provide a base case

set which serves as a pivot for the model to learn.Our model

learns the arithmetic calculation in a curriculum way, where

simpler sentences with fewer words are inputted at initial state.

Our model assumes no prior linguistic knowledge and learns
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the meaning of all the words, compositionality, and order of

operations from just the natural language − denotation pairs.

A. Related work

We adopt the general encoder-decoder framework based on

neural networks augmented with attention mechanism [16],

which allows the model to learn soft alignment between

utterances and logical forms. Our work is related to [17] and

[13], both of which use the Seq2Seq model to map natural

language to logical forms in tree structure without hand-

engineered features. But our work makes one step further by

using denotation of logical form as the learning target and

regard logical forms as latent variables.

How to reduce the searching space is a chief challenge in

weak supervision. A common approach is to constrain the set

of possible logical form compositions, which can significantly

reduce the searching space but also constrain the expressivity

[18]. Lao et al. [19] use random walks to generate logical

forms and use denotation to cut down the searching space

during learning. Liang et al. [20] adopt a similar method to

narrow down the options and allow more complex semantics

to be composed. Different from generating logical forms

forwardly as mentioned above, an alternative method is to use

denotation to infer logical forms using dynamic programming

[15], [21]. In this way, it is more likely to recover the full

set and find the desired one. Inspired by their work, we also

employ this method and store the denotation − logical form

pairs in advance to accelerate the lookup efficiency.

Our work is similar to [22] in the sense that we both

focus on the arithmetic domain and learn from denotations

directly. But their work relies on hand-crafted grammars to

construct logical forms and hand engineered features to filter

out incorrect logical forms. Instead, the Seq2Seq model we use

is grammar-free and the features we select to screen logical

forms is more general. Our main idea is that similar utterance

should have similar logical forms, so that we can filter out

incorrect logical forms by using similarity measurement. We

build up a small base case set to assist this idea and the

similarity function we adopt is simply bag-of-words, which

is replaceable when extending to other fields. Furthermore,

to sort the candidates, we do not have a particular scoring

function to weight extracted features, instead, we use the

ongoing training Seq2Seq model to evaluate their loss.

There are some other related work, Neural Programmer [23]

augmented with a small set of arithmetic and logic operations

is able to perform complex reasoning and has shown success

in question answering [24]. Neural Turing Machines [25] can

infer simple algorithms such as copying and sorting with

external memory.

II. BACKGROUND:SEQUENCE-TO-SEQUENCE MODEL AND

ATTENTION MECHANISM

Before introducing our model, we describe briefly the

Seq2Seq model and attention mechanism.

A. Sequence-to-sequence model

The Seq2Seq model takes a source sequence X =
(x1, x2, ..., xT ) as input and outputs a translated sequence Y =
(y1, y2, ..., yT ′). The model maximizes the generation prob-

ability of Y conditioned on X : p(y1, ..., yT ′ |x1, x2, ..., xT ).
Specifically, the Seq2Seq is in an encoder-decoder structure. In

this framework, an encoder reads the input sequence word by

word into a vector c through recurrent neural network (RNN).

ht = f(xt, ht−1) (1)

and

c = q(h1, ..., hT ),

where ht is the hidden state at time t, c is commonly taken

directly from the last hidden state of encoder q(h1, ..., hT ) =
hT , and f is a non-linear transformation which can be either a

long-short term memory unit (LSTM) [26] or a gated recurrent

unit (GRU) [27]. In this paper, LSTM is adopted and is

parameterized as








it
ft
ot
c̃t









=









σ

σ

σ

tanh









T

(

xt

ht−1

)

(2a)

ct = ft ◦ ct−1 + it ◦ c̃t (2b)

ht = ot ◦ tanh(ct) (2c)

where ◦ is an element-wise multiplication, T is an affine

transformation, σ is the logistic sigmoid that restricts its input

to [0,1], it, ft and ot are the input, forget, and output gates

of the LSTM, and ct is the memory cell activation vector.

The forget and input gates enable the LSTM to regulate

the extent to which it forgets its previous memory and the

input, while the output gate controls the degree to which

the memory affects the hidden state. The encoder employs

bidirectionality, encoding the sentences in both the forward

and backward directions, an approach adopted in machine

translation [12], [16]. In this way, the hidden annotations

ht = (
−→
h T

t ;
←−
h T

t ) concatenate forward
−→
h T

t and backward

annotations
←−
h T

t together, each determined using Equation 2c.

The decoder is trained to estimate generation probability of

next word yt given all the previous predicted words and the

context vector c. The objective function of Seq2Seq can be

written as

p(y1, ..., yT ′ |x1, ..., xT ) =

T ′

∏

t=1

p(yt|c, y1, ..., yt−1). (3)

With an RNN, each conditional probability is modeled as

p(yt|y1, ..., yt−1, c) = g(yt−1, st, c), (4)

where g is a non-linear function that outputs the probability

of yt, yt−1 is the predicted word at time t− 1 in the response

sequence, and st is the hidden state of the decoder RNN at

time t, which can be computed as

st = f(yt−1, st−1, c). (5)



TABLE I
THE BASE CASE SET WITH SEVERAL PAIRS OF < u, s >, HELPING TO REDUCE SEARCHING SPACE

Utterance Logical form Denotation

one plus two 〈 eos 〉 〈 ‘Go’ ‘[’ ‘1’ ‘+’ ‘2’ ’]’ ’End’ 〉 3.0
three minus four times five 〈 eos 〉 〈 ‘Go’ ‘[’ ‘3’ ‘-’ ‘(’ ‘4’ ‘*’ ‘5’ ‘)’ ‘]’ ‘End’ 〉 -17.0
one times two divide three 〈 eos 〉 〈 ‘Go’ ‘(’ ‘(’ ‘1’ ‘*’ ‘2’ ‘)’ ‘/’ ‘3’ ‘)’ ‘End’ 〉 0.667
two divide four plus five 〈 eos 〉 〈 ‘Go’ ‘[’ ‘(’ ‘2’ ‘/’ ‘4’ ‘)’ ‘+’ ‘5’ ‘]’ ‘End’ 〉 5.5

five divide one times two plus three 〈 eos 〉 〈 ‘Go’ ‘[’ ‘(’ ‘(’ ‘5’ ‘/’ ‘1’ ‘)’ ‘*’ ‘2’ ‘)’ ‘+’ ‘3’ ‘]’ ‘End’ 〉 13.0
four minus two times three plus one 〈 eos 〉 〈 ‘Go’ ‘[’ ‘[’ ‘4’ ‘-’ ‘(’ ‘2’ ’*’ ‘3’ ‘)’ ‘]’ ‘+’ ‘1’ ‘]’ ‘End’ 〉 -1.0
three divide four minus five plus two 〈 eos 〉 〈 ‘Go’ ‘[’ ‘[’ ‘(’ ‘3’ ‘/’ ‘4’ ‘)’ ‘-’ ‘5’ ‘]’ ‘+’ ‘2’ ‘]’ ’End’ 〉 -2.25

B. Attention mechanism

The traditional Seq2Seq model predicts each word from

the same context vector c, which deprives the source se-

quence information and makes the alignment imprecisely. To

address this problem, attention mechanism is introduced to

allow decoder focusing on the source sequence instead of

a compressed vector upon prediction [16]. In Seq2Seq with

attention mechanism, each yi in Y corresponds to a context

vector ci instead of c. The conditional probability in Equation

4 becomes

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci), (6)

where the hidden state si is computed by

si = f(yi−1, si−1, ci). (7)

The context vector ci is a weighted average of all hidden states

{ht}
T
t=1 of the encoder, defined as

ci =

T
∑

j=1

αijhj , (8)

where the weight αij is given by

αij =
exp(eij)

∑T

k=1
exp(eik)

, (9)

where eij is an alignment model which scores how well the

inputs around position j and the output at position i match,

eij = a(si−1, hj), (10)

where a is a feed forward neural network, trained jointly with

other components of the system.

III. LEARNING FROM DENOTATIONS

We use the triple 〈u, s, d〉 to denote the linguistic objects,

where u is an utterance, s is a logical form and d is the

denotation of s. We use ⌊u⌋ to represent the translation

of utterance into its logical form, and we use [[s]] for the

denotation of logical form s. Each training data is composed

by the pair 〈u, d〉 without explicitly telling its correct logical

form s.

With denotation as target label of learning, the Seq2Seq

model is trained to put a high probability on ⌊u⌋’s that are

consistent-logical forms that execute to the correct denotation

d. When the space of logical forms is large, searching for

the correct logical form could be cumbersome. Additionally,

different from the previous study which incorporates prior

knowledge such as word embedding [20], object categories [9],

our model in this mathematical expression learning example

has no such knowledge and has to learn the meanings of input

utterance.

Here we formally describe the methods to reduce the

searching space and how to infer the correct logical forms

from denotations.

A. Dynamic programming on denotations

Our first step is to generate all logical forms that have the

correct denotations. Formally, given a denotation d, we wish to

generate a candidate logical form set that satisfy the denotation

demand Ω = {s|[[s]] = d}. Previous work use beam search to

generate candidates but it is hard to recover the full set Ω
due to pruning. Noticing that one denotation may correspond

to multiple logical forms, which leads to the increase of

the number of distinct denotations is much slower than the

number of logical forms. We use dynamic programming on

denotations to recover the full set, following the work of [15],

[21]. A necessary condition for dynamic programming to work

is denotationally invariant semantic function g, such that the

denotation of the resulting logical form g(s1, s2) only depends

on the denotations of s1 and s2. In the arithmetic domain,

the result of an equation can be computed recursively and

independently which certainly satisfies this requirement.

Our primary purpose is to collapse logical forms with the

same denotation together, so that given a denotation d the

candidate set Ω (Figure 1. (a)) can be returned directly. In order

to speed up the lookup efficiency, we store the pair (d,Ω) in

advance.

B. Filter candidate logical forms

In order to filter out incorrect logical forms, we utilize the

fact that similar utterances should have similar logical forms

to reduce the searching space. We build up a base case set

B (Table I) that stores several 〈ub, sb〉 pairs with varying

utterance length. Specifically, given an input pair 〈ui, di〉, we

iterate the base case set to find the one which shares the most

similarity with input utterance ui.

ũb = argmin
ub∈B

e(φ(ub), φ(ui)), (11)

where φ extracts features from utterance ub and ui, here

we use bag-of-words as feature extraction function, and we



Fig. 1. Learning algorithms applied to one example. The utterance is ”Five plus three times two” with denotation 11. In (a), we show the inferred logical
forms from the denotation using dynamic programming. In (b), the candidate logical forms are filtered by base case set. In (c), we use the ongoing Seq2Seq
model to rank the loss of each candidate logical form and return the least one for training. (d) shows Seq2Seq model with attention mechanism with 3-layer
LSTM on both encoder and decoder side.

simply counts the shared features as the feature similarity

measurement function e.

After finding the base case utterance ũb which is closest

to the input utterance ui, we use the corresponding base case

logical form s̃b to filter the candidate set Ω.

Γ = {s|s = argmax
sj∈Ω

e(φ(ũb), φ(ui))

e(φ(s̃b), φ(sj))
}. (12)

We use a new set Γ (Figure 1. (b)) to store these updated

candidate logical forms that have similar features with the

base case 〈ũb, s̃b〉. To further determine the most probable one

from set Γ, we use the Seq2Seq model to examine the loss of

each candidate and select the one with least loss to return for

training.

s̃i = argmax
s∈Γ

pSeq2Seq(s) (13)

The selected logical form s̃i is paired with its utterance

to form a training example 〈ui, s̃i〉 which feeds back to the

Seq2Seq model for training (Figure 1. (c) - (d)).

IV. EXPERIMENTAL STUDIES

A. Dataset

For the experiments, we randomly generate 8000 utterances

with varying length from 3 to 7, split into a training set of 6000

training examples and 2000 test examples. Each utterance

consists of integers from one to five and four operators ‘plus’,

‘minus’, ‘times’, ‘divide’. Every utterance represents a legal

arithmetic expression. Even the scope is quite limited, the

searching space for an equation with length equal to seven

is still numerous: 54 ∗ 43 = 4 ∗ 104, which is caused by the

rich compositionality of arithmetic equations. Besides, this

nature gives rise to one denotation can correspond to much

more logical forms compared with other domains, resulting in

increasing noises for inference.

We select two ways to represent logical forms, both of

them are represented by Arabic numerals and executable

operators, but one is inserted with brackets to denote the

calculation order, linearized from tree structure, the other

assumes knowing calculation order without brackets for de-

notation. The base case set consists of seven samples, the

brackets are omitted directly when considering logical forms

with calculation knowledge (Table I).

The involvement of brackets largely increases the meaning

of our logical form, for the reason that it actually represents

tree structure with logic reasoning. Besides, not only has the

model to learn soft alignment for brackets which are not

introduced in the utterance explicitly, but it has to learn the

brackets matching relationship.

B. Settings

For the convenience of data preprocessing and vectorization,

each input sentence is appended an ending mark 〈eos〉, noting

the end of input. Also, we manually set a maximum length for

the input and output sentence, where the blank position will

be automatically filled by ‘PAD’ mark.

We construct 3 layers of LSTM on both encoder and de-

coder side with 20 hidden units for each layer. An embedding

and a softmax layer is inserted as the first and last layer.

Dropout is used for regularizing the model with a constant

rate 0.3. Dropout operators are used between different LSTM

layers and for the hidden layers before the softmax classifier.

This technique can significantly reduce overfitting, especially

on datasets of small size. Dimensions of hidden vector and

word embedding are set to 20.



We use the RMSProp algorithm to update parameters

with learning rate 0.001 and smoothing constant 0.9. Pa-

rameters are randomly initialized from a uniform distribution

U(−0.05, 0.05). We run the model for 200 epochs.

C. Results and analysis

We report the results with the Seq2Seq model on two vari-

ants, i.e., with brackets noting calculation order and without

brackets as logical forms. To compare the performance of

weak supervision, we also test the performance of traditional

training with gold standard logical form. The result is reported

on the accuracy of denotation − the portion of input sentences

are translated into the correct denotation. Table II presents the

comparison.

TABLE II
OVERALL ACCURACY ON DENOTATION

Method
Seq2Seq

without brackets with brackets

Train with logical form 100.0% 92.4%
Train with denotation 72.7% 69.2%

Overall, the accuracy with logical forms as supervision

is much higher than with denotations, for the reason that

training by gold logical forms does not bring any noises. On

the other hand, the spurious logical forms affect our model’s

performance unavoidably. For instance, an utterance “Five plus

three times four” can be mistakenly translated into [5+(4∗3)],
which has the correct denotation. This is reasonable because

we adopt bag-of-words to measure similarity and this method

does not take the order into consideration. Besides, not all of

the training logical forms returned by our inference process

are correct, but at least they have the correct denotation. So it

is noticeable that even only approximately 45% logical forms

(Figure 2) returned for training are correct, the accuracy on

denotation of our model is much higher than this limit.

To find the best logical form for training, the final pick

decision is made by the ongoing training Seq2Seq model,

this training-by-prediction policy makes the model difficult to

converge (Figure 2). But we can see this policy is effective

to correct its previous prediction, which we call the ability

of self-correction. This proves Seq2Seq model can learn word

meanings and compositionality with noises.

In addition, the performance of training on logical forms

with brackets is inferior to the model without brackets,

which makes sense that longer sequence add difficulty for

learning and brackets introduce more complicated mapping

relationships. However, by utilizing soft alignment, the model

can learn tree structure successfully with only denotation as

supervision.

V. CONCLUSION

In this paper, we present an encoder-decoder neural net-

work model for mapping natural language to their meaning

representations with only denotation as supervision. We use

dynamic programming to infer logical forms from denotations,

and utilize similarity measurement to reduce the searching

Epoch
0 50 100 150 200Lo

gi
ca

l f
or

m
 a

cc
 fo

r 
tr

ai
n 

da
ta

0.2

0.25

0.3

0.35

0.4

0.45

0.5

without brackets
with brackets

Fig. 2. The percentage of correct logical form returned for training as the
number of epoch increases.

space. Also, curriculum learning strategy is adopted to smooth

and accelerate the learning process. Under the policy training-

by-predictions, our model has the ability of self-correction. We

apply our model to the arithmetic domain and experimental re-

sults show that this model can learn word meanings and com-

positionality without resources to domain- or representation-

specific features. One major problem remained in our work is

that the model may confuse the order of predictions, which is

caused by the inherent weakness of bag-of-words similarity

measurement. This could be enhanced by some sequence-

based similarity measurement in future work.

Although the example we test is rather simple, the

expansibility to other fields and application scenarios is

promising due to the few hand-engineered features and its

capability of learning structured form. It would be interesting

to learn a question-answering model with only question-

answer pairs, or apply it to robot navigation task. We expect

to extend our model to these fields and continue to enrich it.
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