
Expect the unexpected: Harnessing Sentence Completion for Sarcasm Detection

Aditya Joshi1,2,3 Samarth Agrawal1 Pushpak Bhattacharyya1 Mark Carman2

1Indian Institute of Technology Bombay, India 2Monash University, Australia
3IITB-Monash Research Academy, India

{adityaj,samartha,pb}@cse.iitb.ac.in, mark.carman@monash.edu

Abstract—The trigram ‘I love being’ is expected to be
followed by positive words such as ‘happy’. In a sarcastic
sentence, however, the word ‘ignored’ may be observed. The
expected and the observed words are, thus, incongruous. We
model sarcasm detection as the task of detecting incongruity
between an observed and an expected word. In order to
obtain the expected word, we use Context2Vec, a sentence
completion library based on Bidirectional LSTM. However,
since the exact word where such an incongruity occurs may
not be known in advance, we present two approaches: an All-
words approach (which consults sentence completion for every
content word) and an Incongruous words-only approach (which
consults sentence completion for the 50% most incongruous
content words). The approaches outperform reported values
for tweets but not for discussion forum posts. This is likely to
be because of redundant consultation of sentence completion
for discussion forum posts. Therefore, we consider an oracle
case where the exact incongruous word is manually labeled in
a corpus reported in past work. In this case, the performance
is higher than the all-words approach. This sets up the promise
for using sentence completion for sarcasm detection.

This paper has been selected for publication at 2017 CON-
FERENCE OF THE PACIFIC ASSOCIATION FOR COM-
PUTATIONAL LINGUISTICS (http://pacling.ucsy.edu.mm/
pacling/)

I. INTRODUCTION

Sarcasm is defined as “the use of irony to mock or
convey contempt1”. For example, the sentence ‘I love being
ignored’ is sarcastic. Automatic sarcasm detection is the
task of predicting whether or not a given text contains
sarcasm. Several statistical approaches have been proposed
for sarcasm detection [1] [2] [3]. In addition, rule-based
approaches based on evidences of sarcasm have also done
well [4] [5] [6]. This paper presents another rule-based
technique. Our technique is novel in its application of
sentence completion for sarcasm detection.

As an introduction to the technique, consider the sarcastic
sentence ‘I love being ignored’. A likely word to follow the
trigram ‘I love being’ would be a positive sentiment word
such as ‘happy’. However, in the sarcastic sentence, the
word ‘ignored’ occurs. The word ‘ignored’ in the sarcastic
sentence is semantically distant from an expected word such
as ‘happy’. This (dis)similarity can be used as an indicator
of incongruity which is central to sarcasm, as per linguistic

1Source: Oxford Dictionary

studies [7][8]. In order to obtain the expected word at a
given position, we harness automatic sentence completion.
Sentence completion predicts the most likely word at a
given position in a sentence [9]. For our experiments, we
use context2vec, a sentence completion toolkit [10]. Thus,
our paper deals with the question:

Because incongruity in sarcasm is a phenomenon where
the unexpected is observed, can sarcasm be detected using
sentence completion?

A key assumption here is that a sentence completion
toolkit trained on a large, general-purpose corpus follows
the language model for non-sarcastic text. The assumption
is reasonable because the sentence completion model is
likely to have learned the language model for non-sarcastic
text since sarcasm is an infrequent phenomenon.

It must be noted that the exact observed word where the
incongruity occurs (‘ignored’ in the example above) is not
known in advance. Hence, a sentence contains multiple can-
didate words of incongruity, out of which the incongruity is
observed in case of specific word(s). We refer to these words
as the ‘incongruous word(s)’. Therefore, our approaches
vary in terms of the candidate incongruous words that are
considered.

The novelty of this paper is as follows:

1) Using sentence completion for sarcasm detection
2) Experimentation with short text (where candidate in-

congruous words are a small set of words), long
text (where candidate incongruous words are a large
set of words), and an oracle case (where the exact
incongruous word is known)

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents the motiva-
tion behind using sentence completion. Section IV presents
two approaches: an all-words approach, and an incongruous
words-only approach. As stated earlier, the two approaches
differ in terms of candidate incongruous words. Section V
gives the experiment setup while Section VI presents the
results. We discuss an oracle case scenario in Section VII to
validate the strength of our hypothesis. Finally, we analyze
the errors made by our system in Section VIII and conclude
the paper in Section IX.

ar
X

iv
:1

70
7.

06
15

1v
1 

 [
cs

.C
L

] 
 1

9 
Ju

l 2
01

7

http://pacling.ucsy.edu.mm/pacling/
http://pacling.ucsy.edu.mm/pacling/


II. RELATED WORK

Majority of the past work in statistical sarcasm detection
uses sarcasm-specific features such as punctuations, emoti-
cons or sarcasm-indicating n-grams [1][2][11][12][3]. For
example, [1] present a semi-supervised algorithm that first
extracts sarcasm-indicating n-grams and then use them as
features for a classifier. [11] use features based on number of
sentiment flips, positive/negative subsequences, in addition
to such n-grams. [3] include features such as audience
information, twitter familiarity, etc.

Recent work in sarcasm detection employs features that
capture contextual information such as an author’s back-
ground, conversational context, etc. [13][14][15][16][17].
Formulations beyond classifiers have also been considered.
For example, [17] use sequence labeling algorithms to
predict sarcasm in individual utterances in a dialogue. On
the other hand, [16] use them to predict sarcasm of the
last utterance in a dialogue with automatic labels in the rest
of the sequence. However, in our case, we do not use any
contextual information from the author or the conversation.
This means that a hyperbolic sentence such as ‘X is the best
President ever!’ (where the sarcasm cannot be understood
based on the text alone) is beyond the scope of our approach.

In addition to the above, several rule-based techniques
based on intuitive indicators of sarcasm have been reported.
[6] predict a tweet as sarcastic if sentiment in the text of
the tweet contradicts with the sentiment of a hashtag in
the tweet. [4] predict a tweet as sarcastic if sentiment of
the tweet does not match with sentiment of past tweets
by the author of the tweet towards the entities in the
tweet. Similarly, [5] use a set of nine rules to predict if
a given simile (for example, ‘as exciting as a funeral’) is
sarcastic. [12] capture sarcasm as a combination of positive
verbs followed by negative situation phrases. Our approach
is rule-based as well.

Our work is the first to employ sentence completion
for the purpose of sarcasm detection. Sentence comple-
tion approaches based on word embeddings have been
reported [18][19]. However, they are only for sentence
completion and not for sarcasm detection. They restrict
themselves to completing sentences. We propose and val-
idate the hypothesis that a ‘language model incongruity’
as experienced by a sentence completion module can be
useful for sarcasm detection. We use context2vec [10] as the
sentence completion library. The distinction between these
sentence completion approaches is beyond the scope of this
paper because the focus is to use one of them for sarcasm
detection and demonstrate that it works.

III. MOTIVATION

As stated in the previous section, in the sarcastic example
‘I love being ignored’, the word ‘ignored’ is observed at a
position where positive sentiment words would be expected.
Hence, the word ‘ignored’ is the exact incongruous word.

Specifically, if context2vec [10] were consulted to complete
the sentence ‘I love being []’ where [] indicates the position
for which the most likely word is to be computed, the word
‘happy’ is returned. Word2vec similarity between ‘happy’
and ‘ignored’ is 0.0204, for certain pre-trained word2vec
embeddings. This low value of similarity between the ex-
pected and observed words can be harnessed as an indicator
for sarcasm. In the rest of the paper, we refer to the word
present at a given position as the ‘observed word’ (‘ignored’
in the example above) where the most likely word at the
position as returned by sentence completion is the ‘expected
word’ (‘happy’ in the example above).

However, a caveat lies in determination of the candidate
incongruous words for which sentence completion will be
consulted. For example, the sentence ‘I could not make it
big in Hollywood because my writing was not bad enough’
is sarcastic because of the incongruous word ‘bad’ which is
at the penultimate position in the sentence. In the absence
of the knowledge of this exact incongruous word, it is
obvious that an algorithm must iterate over a set of candidate
incongruous words. Hence, we present two approaches: one
which iterates over all words and another which restricts
to a subset of words. The first approach is called the all-
words approach, while the second is incongruous words-
only approach. These approaches are described in detail in
the next section. The ‘oracle case’ for our algorithm is a
situation where the incongruous word is exactly known. We
validate that our algorithm holds benefit even for the oracle
case, in Section VII.

IV. APPROACH

We present two approaches that use sentence completion
for sarcasm detection: (a) an “all-words” approach, and
(b) “incongruous words-only” approach. As stated earlier,
in the absence of the knowledge about the exact position
of incongruity, our technique must iterate over multiple
candidate positions. For both the approaches, the following
holds:

Input: A text of length l
Output: Sarcastic/non-sarcastic
Parameters:
• Similarity measure sim(wi, wk) returning the similar-

ity between words wi and wk

• Threshold T (a real value between minimum and
maximum value of sim(wi, wk))

A. All-words approach

As the name suggests, this approach considers all content
words2 as candidate incongruous words. This approach is as
follows:

2Content words are words that are not function words. We ignore function
words in a sentence.



min←∞
for p = 1 to l do:

% compute expected word:
ep ← context2vec(w1, ..., wp−1, [], wp+1, ..., wl)

% check similarity to observed word:
if sim(ep, wp) < min then min← sim(ep, wp)

if min < T then predict sarcastic

Thus, for the sentence ‘A woman needs a man like a fish
needs a bicycle3’ containing five content words (out of which
‘needs’ occurs twice), the sentence completion library will
be consulted as follows:

1) A [] needs a man like a fish needs a bicycle.
2) A woman [] a man like a fish needs a bicycle.
3) A woman needs a [] like a fish needs a bicycle.
4) A woman needs a man like a [] needs a bicycle.
5) A woman needs a man like a fish [] a bicycle.
6) A woman needs a man like a fish needs a [].

B. Incongruous words-only Approach

A key shortcoming of the previous approach is that it may
use similarity values for words which are not incongruous,
since it makes six calls in case of the example given. For
example, the first part of the sentence does not contain
a language model incongruity and hence, the calls are
redundant. Our second approach, the Incongruous words-
only approach, reduces the set of words to be checked by
sentence completion to half, thereby eliminating redundant
comparisons as shown in the previous subsection. Incongru-
ous words-only approach is as follows:

for p = 1 to l do:
% compute average similarity to words:

s̄p ← 1
l−1

∑
i 6=p sim(wi, wp)

% choose positions with lowest averages:
Incongruous← {i : s̄i ≤ median(s̄1, ..., s̄l)}
min←∞
for p ∈ Incongruous do:

% compute expected word:
ep ← context2vec(w1, ..., wp−1, [], wp+1, ..., wl)

% check similarity to observed word:
if sim(ep, wp) < min then min← sim(ep, wp)

if min < T then predict sarcastic

As seen above, we first select the required subset of words
in the sentence. Beyond that, the approach is the same as
the all-words approach. As a result, for the sentence ‘A
woman needs a man like a fish needs a bicycle’, ‘fish’,
‘needs’ and ‘bicycle’ are returned as most incongruous
Incongruous words-only. Hence, the sentence completion is
now consulted for the following input strings:

1) A woman [] a man like a fish needs a bicycle.
2) A woman needs a man like a [] needs a bicycle.

3http://www.phrases.org.uk/meanings/414150.html

3) A woman needs a man like a fish [] a bicycle.
4) A woman needs a man like a fish needs a [].

We hope that this reduction in the set of candidate strings
increases the chances of the algorithm detecting the in-
congruous word and hence, the sarcasm. We observe an
interesting trend in short versus long text in terms of this
reduction, as will be discussed in the forthcoming sections.

V. EXPERIMENT SETUP

Since our approaches are contingent on the set of candi-
date phrases being considered, we consider two scenarios:
short text where the set of words where incongruity has
likely occurred is small, and long text where the set is
large. Therefore, the two datasets used for the evaluation
of our approaches are: (a) Tweets by [12] (2278 total, 506
sarcastic, manually annotated), and (b) Discussion forum
posts by [20] (752 sarcastic, 752 non-sarcastic, manually
annotated). We ignore function words when we iterate over
word positions. They are not removed because such removal
would disrupt the sentence, which is undesirable since we
use sentence completion. We use a list of function words
available online4.

For both approaches, we repeat the experiments over a
range of threshold values, and report the best results (and
the corresponding threshold values). As similarity measures,
we use (a) word2vec similarity computed using pre-trained
embeddings given by the Word2Vec tool. These embeddings
were learned on the Google News corpus5, (b) WordNet
similarity from WordNet::similarity by [21] (specifically,
Wu-Palmer Similarity). The word2vec similarity in Incon-
gruous words-only approach is computed in the same man-
ner as word2vec similarity above. Since word2vec similarity
may not be low for antonyms, we set the similarity measure
for antonyms as 0. As stated earlier, for sentence completion,
we use context2vec by [10]. It is a sentence completion
toolkit that uses Bidirectional LSTM to predict a missing
word, given a sentence. We use the top word returned by
context2vec, as per the model trained on UkWac corpus6.

We report our evaluation for two configurations:
1) Overall Performance: In the first case, we run the

algorithm for a range of threshold values and report
results for the complete dataset.

2) Two-fold cross-validation: Our algorithm is dependent
on the value of the threshold. Hence, we divide the
dataset into two splits and repeat the experiments in
two runs: estimate the optimal threshold on a split,
and report results for the other, and vice versa.

VI. RESULTS

In this section, we present an evaluation of our ap-
proaches, on the two datasets: the first consisting of short

4http://www.ranks.nl/stopwords
5https://code.google.com/archive/p/Word2Vec/
6 http://u.cs.biu.ac.il/∼nlp/resources/downloads/context2vec/

https://code.google.com/archive/p/Word2Vec/
http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/


Figure 1. Determining optimal value of threshold; Tweets, word2vec,
All-words approach

Figure 2. Determining optimal value of threshold; Discussion Forum posts,
word2vec, All-words approach

text (tweets), and the second consisting of long text (discus-
sion forum posts). We first show the results for the complete
dataset with optimal values of the threshold. We then repeat
our experiments where the threshold is determined using a
train-test split. These two configuations (overall performance
and two-fold cross-validation) collectively validate the ben-
efit of our approach.

A. Overall Performance

Table I shows the performance for tweets. Figure 1 shows
how optimal thresholds are determined. When word2vec
similarity is used for the all-words approach, an F-score of
54.48% is obtained. We outperform two past works [12],
[11] which have reported their values on the same dataset.
The best F-score of 80.24% is obtained when WordNet is
used as the similarity measure in our Incongruous words-
only approach. We observe that the Incongruous words-
only approach performs significantly better than the all-
words approach. In case of word2vec similarity, the F-
score increases by around 18%, and by around 9% in case
of WordNet similarity. Also, the optimal threshold values
are lower for the all-words approach as compared to the
Incongruous words-only approach.

P R F

Riloff et al. (2013) 62 44 51
Joshi et al. (2015) 77 51 61

Similarity T P R F

All-Words Approach

Word2Vec 0.11 67.85 45.51 54.48
WordNet 0.11 67.68 74.84 71.08

Incongruous words-only Approach

Word2Vec 0.42 68.00 77.64 72.50
WordNet 0.12 82.77 77.87 80.24

Table I
RESULTS OF OUR APPROACH FOR DATASET OF TWEETS BY RILOFF ET
AL. (2013), COMPARED WITH BEST REPORTED VALUES (JOSHI ET AL.

(2015) AND RILOFF ET AL. (2013)) ON THE SAME DATASET

P R F

Joshi et al. (2015) 48.9 92.4 64

Similarity T P R F

All-Words Approach

Word2Vec 0.48 56.14 52.17 54.08
WordNet 0.27 45.12 47.68 46.37

Incongruous words-only Approach

Word2Vec 0.36 37.04 47.48 41.61
WordNet 0.15 42.69 48.18 45.27

Table II
RESULTS OF OUR APPROACH FOR DATASET OF DISCUSSION FORUM

POSTS BY WALKER ET AL (2012), COMPARED WITH BEST REPORTED
VALUE ON THE SAME DATASET

Table II shows the performance of our approaches for
discussion forum posts, compared with past work by [11].
Note that [12] do not report performance on this dataset and
are hence, not included in this table. Figure 2 shows how
optimal threshold is determined. Note that similar trends
are observed for other cases as well. In this case, our
approaches do not perform as well as the past reported value
in [11]. Also, unlike the tweets, the Incongruous words-
only approach results in a degradation as compared to all-
words approach, for discussion forum posts. This shows that
while our approach works for short text (tweets), it does not
work for long text (discussion forum posts). This is because
the average length of discussion forum posts is higher than
that of tweets. As a result, the all-words approach or even
Incongruous words-only approach may introduce similarity
comparison with irrelevant words (‘man’ and ‘woman’ in
the example in Section 3).

B. Two-fold cross-validation

Tables III and IV show the two-fold cross-validation
performance in case of tweets and discussion forum posts
respectively. In each of the cases, past work that reports



P R F

Riloff et al. (2013) 62 44 51
Joshi et al. (2015) 77 51 61

Similarity
Metric

Best-T P R F

All words

Word2Vec (0.1, 0.1) 67.68 47.96 56.12
WordNet (0.1, 0.1) 68.83 76.93 72.66

Incongruous words-only

Word2Vec (0.42,0.1) 63.92 77.64 70.09
WordNet (0.14,0.12) 82.81 77.91 80.28

Table III
TWO-FOLD CROSS-VALIDATION PERFORMANCE OF OUR APPROACHES

FOR THE TWEETS DATASET; BEST-T VALUES IN PARENTHESES ARE
OPTIMAL THRESHOLDS AS OBTAINED FOR THE TWO FOLDS

P R F

Joshi et al. (2015) 48.9 92.4 64

Similarity
Metric

Best-T P R F

All words

Word2Vec (0.48, 0.48) 56.20 52.17 54.10
WordNet (0.37, 0.46) 43.13 48.04 45.45

Incongruous words-only

Word2Vec (0.19,0.25) 36.48 47.41 41.23
WordNet (0.15,0.12) 28.34 48.04 35.33

Table IV
TWO-FOLD CROSS-VALIDATION PERFORMANCE OF OUR APPROACHES

FOR THE DISCUSSION FORUM POSTS DATASET; BEST-T VALUES IN
PARENTHESES ARE OPTIMAL THRESHOLDS AS OBTAINED FOR THE TWO

FOLDS

results on the same dataset is also mentioned: [12] and
[11] report performance on the tweets dataset while [11]
do so on the discussion forums dataset. The optimal values
of threshold for the two folds are also reported since they
cannot be averaged. Table III shows that the incongruous
words-only approach outperforms past work and the all
words approach. The best performance is 80.28% when
incongruous words-only approach and WordNet similarity
are used. Thus, in the case of tweets, our approaches perform
better than past reported values.

Table IV shows the corresponding values for the discus-
sion forum posts. Unlike tweets, both our approaches do not
perform as well as past reported values. The reported value
of F-score is 64% while our approaches achieve a best F-
score of 54.10%. This is likely because discussion forum
posts are longer than tweets and hence, the set of candidate
incongruous words is larger. This negative observation, in
combination with the observation in case of tweets above, is
an indicator of how the set of candidate incongruous words
is a crucial parameter of the success of our approaches.

Approach T P R F

All-words 0.29 55.07 55.78 55.43
Oracle 0.014 59.13 68.37 63.42

Table V
PERFORMANCE OF THE ALL-WORDS APPROACH VERSUS THE

SITUATION WHEN THE EXACT INCONGRUOUS WORD IS KNOWN

VII. DISCUSSION

Since our approaches perform well for short text like
tweets but not for long text such as discussion forum posts,
choosing the right set of candidate positions appears to
be crucial for the success of the proposed technique. The
Incongruous words-only is a step in that direction, but we
observe that it is not sufficient in case of discussion forum
posts. Hence, in this section, we consider an oracle case:
the exact incongruous word case. This is the case where the
exact incongruous word is known. Hence, we now compare
our all-words approach with an ‘exact incongruous word’
approach, when the exact incongruous word is known. In
this case, we do not iterate over all word positions but
only the position of the incongruous word. For the purpose
of these experiments, we use the dataset by [22]. Their
dataset consists of a word, a tweet containing the word and
the sarcastic/non-sarcastic label. In case of sarcastic tweets,
the word indicates the specific incongruous word. Table V
compares the all-words approach with the only incongruous
word approach. We observe that the F-score increases from
55.43% to 63.42% when the exact incongruous word is
known. This shows that our approaches can be refined
further to be able to zone in on a smaller set of candidate
incongruous words.

It is never possible to know the exact incongruous word
in a sentence. Therefore, future approaches that follow this
line of work would need to work towards reducing the set
of candidate incongruous words.

VIII. ERROR ANALYSIS

Some errors made by our approaches are due to the
following reasons:

1) Absence of WordNet senses: For a certain input
sentence, the word ‘cottoned’ is returned as the most
likely word for a position. However, no sense corre-
sponding to the word exists in WordNet, and so the
word is ignored.

2) Errors in sentence completion: The sarcastic sen-
tence ‘Thank you for the input, I’ll take it to heart7’ is
incorrectly predicted as non-sarcastic. For the position
where the word ‘input’ is present, the expected word
as returned by context2vec is ‘message’.

7This tweet is labeled as sarcastic in the dataset by [12]



IX. CONCLUSION & FUTURE WORK

This paper describes how sentence completion can be
used for sarcasm detection. Using context2vec, a sentence
completion toolkit, we obtain the expected word at a given
position in a sentence, and compute the similarity between
the observed word at that position and the expected word.
Since the position of the incongruous (observed) word may
not be known, we consider two approaches: (a) All-words
approach in which context2vec is invoked for all content
words, (b) Incongruous words-only approach where con-
text2vec is invoked only for 50% most incongruous words.
We present our experiments on two datasets: tweets and
book snippets, and for two similarity measures: word2vec
similarity, and WordNet similarity. Our approach outper-
forms past reported work for tweets but not for discussion
forum posts, demonstrating that sentence completion can be
used for sarcasm detection of short text. Finally, we validate
the benefit of our approach for an oracle case where the exact
incongruous word is known. Our approach results in a 8%
higher F-score as compared to the all-words approach. Our
error analysis shows that absent WordNet senses and errors
in sentence completion results in errors by our approach.

Our findings set up the promise of sentence completion for
sarcasm detection. This work can be extended by incorporat-
ing the current technique as a set of features for a statistical
classifier. Since our approaches do not perform well for
discussion forum posts, our approach must be refined to
arrive at a good subset of candidate incongruous words.

REFERENCES

[1] O. Tsur, D. Davidov, and A. Rappoport, “Icwsm-a great
catchy name: Semi-supervised recognition of sarcastic sen-
tences in online product reviews.” in ICWSM, 2010.

[2] A. Reyes, P. Rosso, and T. Veale, “A multidimensional
approach for detecting irony in twitter,” Language Resources
and Evaluation, vol. 47, no. 1, pp. 239–268, 2013.

[3] A. Joshi, V. Tripathi, K. Patel, P. Bhattacharyya, and M. Car-
man, “Are word embedding-based features for sarcasm detec-
tion?” EMNLP, 2016.

[4] A. Khattri, A. Joshi, P. Bhattacharyya, and M. J. Carman,
“Your sentiment precedes you: Using an author’s historical
tweets to predict sarcasm,” in WASSA, 2015, p. 25.

[5] T. Veale and Y. Hao, “Detecting ironic intent in creative
comparisons.” in ECAI, vol. 215, 2010, pp. 765–770.

[6] D. Maynard and M. A. Greenwood, “Who cares about sarcas-
tic tweets? investigating the impact of sarcasm on sentiment
analysis,” in LREC, 2014.

[7] R. W. Gibbs, The poetics of mind: Figurative thought, lan-
guage, and understanding. Cambridge University Press,
1994.

[8] S. L. Ivanko and P. M. Pexman, “Context incongruity and
irony processing,” Discourse Processes, vol. 35, no. 3, pp.
241–279, 2003.

[9] G. Zweig and C. J. Burges, “The microsoft research sentence
completion challenge,” Technical Report MSR-TR-2011-129,
Microsoft, Tech. Rep., 2011.

[10] O. Melamud, J. Goldberger, and I. Dagan, “context2vec:
Learning generic context embedding with bidirectional lstm,”
in CONLL, 2016, pp. 51–61.

[11] A. Joshi, V. Sharma, and P. Bhattacharyya, “Harnessing
context incongruity for sarcasm detection,” in ACL-IJCNLP,
vol. 2, 2015, pp. 757–762.

[12] E. Riloff, A. Qadir, P. Surve, L. De Silva, N. Gilbert, and
R. Huang, “Sarcasm as contrast between a positive sentiment
and negative situation.” in EMNLP, 2013, pp. 704–714.

[13] A. Rajadesingan, R. Zafarani, and H. Liu, “Sarcasm detection
on twitter: A behavioral modeling approach,” in ICWSM.
ACM, 2015, pp. 97–106.

[14] B. C. Wallace, D. K. Choe, and E. Charniak, “Sparse,
contextually informed models for irony detection: Exploiting
user communities, entities and sentiment.” in ACL (1), 2015,
pp. 1035–1044.

[15] Z. Wang, Z. Wu, R. Wang, and Y. Ren, “Twitter sarcasm de-
tection exploiting a context-based model,” in WISE. Springer,
2015, pp. 77–91.

[16] A. Joshi, V. Tripathi, P. Bhattacharyya, and M. Carman, “Har-
nessing sequence labeling for sarcasm detection in dialogue
from tv series ‘friends’,” CoNLL, p. 146, 2016.

[17] A. Silvio, B. C. Wallace, H. Lyu, and P. C. M. J. Silva, “Mod-
elling context with user embeddings for sarcasm detection in
social media,” CoNLL 2016, p. 167, 2016.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” arXiv
preprint arXiv:1301.3781, 2013.

[19] Q. Liu, H. Jiang, S. Wei, Z.-H. Ling, and Y. Hu, “Learn-
ing semantic word embeddings based on ordinal knowledge
constraints,” in ACL-IJCNLP, 2015.

[20] M. A. Walker, J. E. F. Tree, P. Anand, R. Abbott, and J. King,
“A corpus for research on deliberation and debate.” in LREC,
2012, pp. 812–817.

[21] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet::
Similarity: measuring the relatedness of concepts,” in Demon-
stration papers at HLT-NAACL 2004. Association for
Computational Linguistics, 2004, pp. 38–41.

[22] D. Ghosh, W. Guo, and S. Muresan, “Sarcastic or not: Word
embeddings to predict the literal or sarcastic meaning of
words,” in EMNLP, 2015.


	I Introduction
	II Related Work
	III Motivation
	IV Approach
	IV-A All-words approach
	IV-B Incongruous words-only Approach

	V Experiment Setup
	VI Results
	VI-A Overall Performance
	VI-B Two-fold cross-validation

	VII Discussion
	VIII Error Analysis
	IX Conclusion & Future Work
	References

