Skip to main content

Towards Underwater Image Enhancement Using Super-Resolution Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 819))

Abstract

Underwater objects detection and recognition is challenging because of the degradation of underwater images, such as color casts, blurring and low contrast. To tackle this problem, a novel underwater image enhancement method is proposed. It consists of two main steps. First, an adaptive color correction algorithm is used to compensate color casts and produce natural color corrected images. Second, a super-resolution convolutional neural network is applied to color corrected images in order to remove blurring. The proposed network learns a relationship which can be employed into image de-blurring from a large amount of blurry images and the corresponding clear images. Based on the relationship, the color corrected image will be de-blurred and sharpened. The experimental results show that the proposed strategy improves the quality of underwater images efficiently and arrives at good results in underwater objects detection and recognition.

X. Fu—This work was supported in part by the National Natural Science Foundation of China Grant 61370142 and Grant 61272368, by the Fundamental Research Funds for the Central Universities Grant 3132016352, by the Fundamental Research of Ministry of Transport of P. R. China Grant 2015329225300.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   107.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, R., Wang, Y., Zhang, J., Fu, X.: Review on underwater image restoration and enhancement algorithms. In: Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, p. 56. ACM (2015)

    Google Scholar 

  2. Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010(1), 746052 (2010)

    Article  Google Scholar 

  3. Hitam, M.S., Awalludin, E.A., Yussof, W.N.J.H.W., Bachok, Z.: Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In: 2013 International Conference on Computer Applications Technology (ICCAT), pp. 1–5. IEEE (2013)

    Google Scholar 

  4. Ghani, A.S.A., Isa, N.A.M.: Enhancement of low quality underwater image through integrated global and local contrast correction. Appl. Soft Comput. 37, 332–344 (2015)

    Article  Google Scholar 

  5. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  6. Li, C.-Y., Guo, J.-C., Cong, R.-M., Pang, Y.-W., Wang, B.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 81–88. IEEE (2012)

    Google Scholar 

  8. Wang, Y., Ding, X., Wang, R., Zhang, J., Fu, X.: Fusion-based underwater image enhancement by wavelet decomposition. In: 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 1013–1018. IEEE (2017)

    Google Scholar 

  9. Farhadifard, F., Zhou, Z., von Lukas, U.F.: Learning-based underwater image enhancement with adaptive color mapping. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 48–53. IEEE (2015)

    Google Scholar 

  10. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  11. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv preprint arXiv:1302.4389 (2013)

  12. Cai, B., Xiangmin, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  13. Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: Sun database: exploring a large collection of scene categories. Int. J. Comput. Vis. 119(1), 3–22 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015)

    Article  Google Scholar 

  15. Crete, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: Human Vision and Electronic Imaging, vol. 12, p. 64920 (2007)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianping Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, X., Wang, Y., Liang, Z., Zhang, J., Fu, X. (2018). Towards Underwater Image Enhancement Using Super-Resolution Convolutional Neural Networks. In: Huet, B., Nie, L., Hong, R. (eds) Internet Multimedia Computing and Service. ICIMCS 2017. Communications in Computer and Information Science, vol 819. Springer, Singapore. https://doi.org/10.1007/978-981-10-8530-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8530-7_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8529-1

  • Online ISBN: 978-981-10-8530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics