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Abstract. Although Deep Convolutional Neural Networks trained with
strong pixel-level annotations have significantly pushed the performance
in semantic segmentation, annotation efforts required for the creation of
training data remains a roadblock for further improvements. We show
that augmentation of the weakly annotated training dataset with syn-
thetic images minimizes both the annotation efforts and also the cost
of capturing images with sufficient variety. Evaluation on the PASCAL
2012 validation dataset shows an increase in mean IOU from 52.80% to
55.47% by adding just 100 synthetic images per object class. Our ap-
proach is thus a promising solution to the problems of annotation and
dataset collection.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have achieved state-of-the-art per-
formance on several image processing and computer vision tasks like image clas-
sification, object detection, and segmentation [1, 2]. Numerous applications de-
pend on the ability to infer knowledge about the environment through image
acquisition and processing. Hence, scene understanding as a core computer vi-
sion problem has received a lot of attention. Semantic segmentation, the task of
labelling pixels by their semantics (like ’person’, ’dog’, ’horse’), paves the road
for complete scene understanding. Current state-of-the-art methods for seman-
tic segmentation are dominated by deep convolutional neural networks (DC-
NNs) [3–5]. However, training end-to-end CNNs requires large scale annotated
datasets. Even with a large enough dataset, training segmentation models with
only image level annotations is quite challenging [6–8] as the architecture needs
to learn from higher level image labels and then predict low-level pixel labels. The
significant problem here is the need for pixel-wise annotated labels for training,
which becomes a time-consuming and expensive annotation effort.The Pascal
Visual Object Classes (VOC) [9] challenge considered to be a standard dataset
for challenges like classification, detection, segmentation, action classification,
and person layout provides only 1464 (training) and 1449 (validation) pixel-wise
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labelled images for semantic segmentation challenge. Some researchers have ex-
tended training dataset [10] with 8.5k strong pixel-wise annotations (consisting
of the same 21 classes as PASCAL VOC) to counter this problem. In practical
applications, the challenge still stands since various classes of objects need to be
detected, and annotated dataset for such training is always required.

To reduce the annotation efforts, recent reports use weakly-annotated datasets
to train deep CNN models for semantic segmentation. Typically, such weak an-
notations take the form of bound-boxes, because forming bound-boxes around
every instance of a class is around 15 times faster than doing pixel-level la-
belling [11]. These approaches rely on either defining some constraints [12] or on
using multiple instance learning [13] techniques. [14] uses GraphCut for approx-
imating bound-boxes to semantic labels. Although deep CNNs (such as the one
proposed by [15] using DeepLab model [5]) significantly improved the segmenta-
tion performance using such weakly-annotated datasets, they failed to provide
good visualization on test images.

There have been solutions proposed to reduce annotation efforts by employ-
ing transfer learning or simulating scenes. The research community has proposed
multiple approaches for the problem of adapting vision-based models trained in
one domain to a different domain [16–20]. Examples include: re-training a model
in the target domain [21]; adapting the weights of a pre-trained model [22]; using
pre-trained weights for feature extraction [23]; and, learning common features
between domains [24]. Augmentation of datasets with synthetically rendered
images or using datasets composed entirely of synthetic images is one of the
techniques that is being explored to address the dearth of annotated data for
training all kinds of CNNs. Significant research in transfer learning from syntheti-
cally rendered images to real images has been published [25,26]. Most researchers
have used gaming or physics rendering engine to produce synthetic images [25]
especially in the automotive domain. Peng et al. [27] have done progressive work
in the Object Detection context, understanding various cues affecting transfer
learning from synthetic images. But they train individual classifiers for each class
after extracting features from pre-trained CNN. They show that adding differ-
ent cues like background, object textures, shape to the synthetic image increases
the performance [26, 28] for object detection. There has not been an attempt
yet to benchmark performances on the standard PASCAL VOC [9] semantic
segmentation benchmark using synthetic images.

To the best of our knowledge, our report is the first attempt at combin-
ing weak annotations (generating semantic labels from bound box labels) and
synthetically rendered images from freely available 3D models for semantic seg-
mentation. We demonstrate a significant increase in segmentation performance
(as measured by the mean of pixel-wise intersection-over-union (IoU)) by using
semantic labels from weak annotations and synthetic images. We used a Fully
Convolutional Network (FCN-8s) architecture [3] and evaluate it on the stan-
dard PASCAL VOC [9] semantic segmentation dataset. The rest of this paper is
organized as follows: our methodology is described in section 2, followed by the
results we obtain reported in section 3, finally concluding the paper in section 4.
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2 Method

Given an RGB image capturing one or many of the 20 objects included in PAS-
CAL VOC 2012 semantic segmentation challenge, our goal is to predict a label
image with pixel-wise segmentation for each object of interest. Our approach,
represented in Figure 1, is to train a deep CNN with synthetic rendered im-
ages from available 3D models. We divide the training of FCN into two stages:
fine-tuning FCN with the Weak(10k) dataset (real images with bound box la-
bels) generated from bound box labelled images, and fine-tuning with our own
Syn(2k) dataset (synthetic images rendered from 3D models). Our methodology
can be divided into two major parts: dataset generation and fine-tuning of the
FCN. These are explained in the following subsections.

Fig. 1. Overview representing the approach for learning semantic segmentation from
weak bound-box labels and synthetic images rendered using 3D models.
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2.1 Dataset generation

Weakly supervised semantic annotations: To train the CNN for semantic
segmentation, we use the available bound-box annotations in PASCAL-VOC
object detection challenge training set (10k images with 20 classes). Since the
bound-boxes fully surround the object including pixels from background, we
filter those pixels into foreground and background. Later the foreground pixels
are given their corresponding object label in cases where multiple objects are
present in an image. Two methods were chosen for converting bound-boxes to
semantic segmentation namely Grab-Cut [14] and Conditional Random Fields
(CRF) as deployed by [5, 15]. Based upon the performance on a few selected
images, we use the labels from CRF for training the CNN. Figure 2 shows
the comparison of results from both methods. Grab-Cut tends to miss labelling
smaller objects but is precise in labelling larger objects. CRF labels objects of
interest accurately with a small amount of noise around the edges.

Synthetic images rendered from 3D models: We use the open source 3D
graphics software Blender for this purpose. Blender-Python APIs facilitates the
loading of 3D models and automation of scene rendering. We use Cycles Render
Engine available with Blender since it supports ray-tracing to render synthetic
images. Since all the required information for annotation is available, we use the
PASCAL Segmentation label format with labelled pixels for 20 classes.

Real world images have lot of information embedded about the environment,
illumination, surface materials, shapes etc. Since the trained model, at test time
must be able to generalize to the real world images, we take into consideration
the following aspects during generation of each scenario:

1. Number of objects
2. Shape, Texture, and Materials of the objects
3. Background of the object
4. Position, Orientation of camera
5. Illumination via light sources

In order to simulate the scenario, we need 3D models, their texture infor-
mation and metadata. Thousands of 3D CAD models are available online. We
choose ShapeNet [29] database since it provides a large variety of models in the 20
categories for PASCAL segmentation challenge. Figure 3a shows few of the mod-
els used for rendering images. The variety helps randomize the aspect of shape,
texture and materials of the objects. We use images from SUN database [30] as
background images. From the large categories of images, we select few categories
relevant as background to the classes of objects to be recognized.

For generating training set with rendered images, the 3D scenes need to be
distinct. For every class of object, multiple models are randomly chosen from the
model repository. Each object is scaled, rotated and placed at random location
within the field of view of the camera which is placed at a pre-defined location.
The scene is illuminated via directional light source. Later, a background image is
chosen from the database and the image is rendered with Cycles Render Engine,
finally generating RGB image and pixel-wise labelled image. Figure 3b shows
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Fig. 2. Comparision of CRF and Grab-Cut segmentation from bound box labels
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Fig. 3. (a) 3D models used for synthetic dataset (b) Synthetic images with multiple
objects (c) Images from the training set of PASCAL VOC 2012 Object Detection
Dataset
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few rendered images used as training set while Figure 3c shows the subset of real
images from PASCAL Object Detection dataset (Weak(10k)) used in training.

Fig. 4. FCN-8s Architecture [3]

2.2 Fine-tuning the Deep CNN

We fine-tune FCN-8s [3] pretrained on ImageNet [31] initially with 10k real im-
ages along with semantic labels generated from bound-boxes using CRF. All
layers in the network are fined-tuned with base learning rate of 1e−5. We fur-
ther reference this model as baseline model. In next stage, we fine tune the
baseline model with synthetic images generated from Blender. Selected layers
(score_pool3, score_pool4, upscore2, upscore_pool4 and upscore8 shown in
Figure 4) consisting of 2 convolutional and 3 deconvolutional layers are fine-tuned
with base learning rate of 1e−6. The network is trained with Adam optimizer for
pixel-wise softmax loss function. Since the rendered images from 3D models are
not rich in terms cues like textures, shadows and hence are not photo-realistic,
we choose to fine-tune only few layers to capture majorly the higher hierarchical
features like shape of the object.

3 Results and Discussion

The experiments were carried out using the workstation with Intel Core i7-5960X
processor accelerated by NVIDIA GEFORCE GTX 1070. NVIDIA-DIGITSTM

(v5.0) [32] was used with Caffe library to train and manage the datasets. The
proposed CNN was evaluated on the PASCAL-VOC 2012 segmentation dataset
consisting of 21 classes (20 foreground and 1 background class). The PASCAL
2012 segmentation dataset consists of 1464 (train) and 1449 (val) images for
training and validation respectively.
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Fig. 5. Comparision of the segmented labels from Ground Truth, predictions from
CNN trained with Weak(10k) and Weak(10k)+Syn(2k)
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Table 1. IoU Values for different classes evaluated on the PASCAL Semantic Segmen-
tation Validation Set [9]. IoU Values higher than baseline model have been highlighted

Real(1.5k) Weak(10k)
(Baseline)

Weak(10k)+
Syn_Car(100)

Weak(10k)+
Syn_Bot(100)

Weak(10k)+
Syn_Aero(100)

Weak(10k)+
Syn(2k)

Background 87.88 87.12 87.38 86.78 85.39 87.88
Aeroplane 58.07 68.81 69.75 67.98 67.89 69.39
Bicycle 46.47 27.39 27.48 24.29 23.13 27.65
Bird 54.61 55.46 55.35 57.65 63.90 57.23
Boat 39.73 42.76 46.25 45.62 48.89 47.76
Bottle 41.56 47.25 44.38 57.55 27.83 55.52
Bus 61.67 73.96 77.70 73.15 68.51 76.19
Car 48.47 51.15 69.31 50.42 47.04 61.83
Cat 64.93 71.37 69.32 68.80 65.39 72.58
Chair 16.92 13.17 11.35 10.38 5.29 14.91
Cow 30.43 57.88 57.28 58.98 56.24 59.23
Dining Table 39.47 42.95 42.93 42.98 27.21 48.50
Dog 53.43 60.74 59.65 58.71 54.36 60.56
Horse 44.40 54.92 54.34 54.70 51.41 56.64
Motor Bike 59.03 54.99 56.47 50.58 44.46 62.49
Person 65.47 66.01 65.70 63.92 61.50 63.43
Potted Plant 14.06 41.38 36.12 41.46 23.72 49.54
Sheep 56.05 65.71 66.08 66.27 61.90 65.87
Sofa 24.75 30.37 29.46 28.46 17.60 36.95
Train 54.05 67.48 66.47 64.04 56.34 68.69
Tv Monitor 38.62 27.99 28.26 27.97 16.73 22.06
Mean IoU 47.62 52.80 53.38 52.41 46.42 55.47

Table 1 shows the comparison of various CNN models trained on datasets
listed in the first column. The performances reported are calculated according
to the standard metric, mean of pixel-wise intersection-over-union (IoU). The
first row lists the 21 classes and the mean IOU over all 21 classes.

The first row displays the performance when FCN is fine-tuned for real im-
ages with strong pixel-wise annotations from PASCAL VOC 2012 segmentation
training dataset addressed as Real(1.5k). Using bound-box annotated images as
weak annotations was an alternative proposed earlier by [15] which performed
better than just using standard training dataset (with size of approximately
1.5k images). The second row showcases that the model trained with 10k weak
bound-box annotated data (converted to pixel-wise labels using CRF) improved
the mean-IoU performance from 47.68% to 52.80%. The predictions from CNN
trained on Weak(10k) are represented in Figure 5 third column. On comparing
them with ground truth, it is observed that predictions miss the shape and sharp
boundaries of the object.

Considering the CNN fine-tuned for Weak(10k) dataset as the baseline, we
further fine-tuned it with rendered images of single class. Table 1 highlights the
effect of using synthetic dataset on few classes namely car, bottle and aeroplane.
Syn_Car(100) denotes the dataset of 100 synthetic images with car as the object
of interest. We observed that by using few synthetic images from single class, the
performance of segmenting car as well as 7 other classes improved. The improve-
ment in other classes can be explained by common features learned from the car
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images. This trend can be observed for other classes like bottle (Syn_Bot(100))
and aeroplane (Syn_Aero(100)).

Finally, we fine-tuned the baseline model with complete set of synthetic im-
ages (100 images per class; 20 classes) addressed as Syn(2k). The mean IoU of
this model increased from 52.80% to 55.47% as shown in Table 1 which clearly
proves our hypothesis of supplementing synthetic images with weak annotated
dataset. Some classes (car, bottle) showcased a significant improvement (10% for
car, 8% for bottle) indicating the synthetic images in such cases to be more infor-
mative than others. While the classes like bicycle, dog, person and TV-monitor
had lower IoU values since we had fewer 3D models available for those object
types. Since objects like cow, cat, person etc. have highly variable appearance
compared to other object classes, we observe lesser improvement in performance.

To further explore the usefulness of synthetic and weak annotated dataset in
conjunction with strong annotated real dataset, we fine-tune FCN with
Real(1.5k)+Weak(10k)+Syn(2k). The model achieves 58.27% (mean IoU) while
Real(1.5k)+Syn(2k) achieves 5.08% (mean IoU) indicating the negative effect
of non-photorealistic rendered images on strong annotation in real dataset.

Figure 5 shows the comparison of the semantic labels generated from net-
work trained on Weak(10k) dataset and Weak(10k)+Syn(2k) dataset. The latter
predictions are better since they produce sharper edges and shapes. The results
prove that shape information from the synthetic models help eliminate the noise
generated from CRF in labels. It is worth noting that even though synthetic
images are non photo-realistic, and lack visual information from relevant back-
grounds for objects, multiple object class in a single image or rich textures but
they represent higher hierarchical feature like shape and thus can be used along-
side weakly annotated images to achieve better performance on semantic seg-
mentation tasks. The benchmark performance of FCN-8s on PASCAL test data
when trained on augmented real image dataset released by [10] with strong
annotations is 62.2% (mean IoU). While comparing with the benchmark per-
formance, our model performs reasonably well with 55.47% (mean IoU) trained
with the total of 12k images (Weak(10k)+Syn(2k)).

4 Conclusion

Our report demonstrates a promising approach to minimize the annotation and
dataset collection efforts by using rendered images from freely available 3D mod-
els. The comparison shows that using 10k weakly annotated images (which ap-
proximately equals the annotation efforts for 1.5k strong labels) with just 2k
synthetic rendered images gives a significant rise in segmentation performance.

This work can be extended by training CNN with larger synthetic dataset,
with richer 3D models and relevant backgrounds. Adding other features like rel-
ative scaling and occlusions can further strengthen the synthetic dataset. The
effect of using synthetic dataset with improved architectures for semantic seg-
mentation are being explored further. Further investigation can be done on fac-
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tors like domain adaptation, co-adaptation among deeper layers that affect the
transfer learning from synthetic to real images.
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