Skip to main content

Detection of Coal Seam Fires in Summer Seasons from Landsat 8 OLI/TIRS in Dhanbad

  • Conference paper
  • First Online:
  • 1455 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 841))

Abstract

Surface and sub-surface coal seam fires are detected by estimating Land Surface Temperature (LST). The LST of an area depends on several factors such as, seasonal variation, nature of soil, urban settlements, etc. Temperatures of several areas of Dhanbad region of Eastern India are affected by the presence of surface and sub-surface coal seam fires. Coal seam fire detection has several challenges. Specially in summer season, thermal anomalies provide false classifications of such fires. It has been observed that during summer season, water bodies have high temperatures, and thus affecting the performance of detection of fires. This paper proposes a novel method to detect surface and subsurface fires in summer from satellite data by removing the high temperature water bodies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall is defined as \(t_p/(t_p+f_n\)) where \(t_p\), and \(f_n\) are true positives, and false negatives, respectively.

References

  1. Stracher, G.B., Taylor, T.P.: Coal fire burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59, 7–17 (2004)

    Article  Google Scholar 

  2. Sinha, A., Singh, V.K.: Spontaneous coal seam fires: a global phenomenon. In: International Conference on Spontaneous Coal Seam Fires: Mitigating a Global Disaster, pp. 42–65 (2005)

    Google Scholar 

  3. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., Sobrino, J.A.: Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ. 131, 14–37 (2013)

    Article  Google Scholar 

  4. Jimenez-Munoz, J.C., Cristobal, J., Sobrino, J.A., Soria, G., Ninyerola, M., Pons, X.: Revision of the single-channel algorithm for land surface temperature retrieval from landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 47(1), 339–349 (2009)

    Article  Google Scholar 

  5. Sória, G., Sobrino, J.A.: ENVISAT/AATSR derived land surface temperature over a heterogeneous region. Remote Sens. Environ. 111(4), 409–422 (2007)

    Article  Google Scholar 

  6. Wang, N., Li, Z.-L., Tang, B.-H., Zeng, F., Li, C.: Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique. Int. J. Remote Sens. 34(9–10), 3485–3502 (2013)

    Article  Google Scholar 

  7. Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L.: Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 90(4), 434–440 (2004)

    Article  Google Scholar 

  8. Peres, L.F., DaCamara, C.C.: Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sens. 43(8), 1834–1844 (2005)

    Article  Google Scholar 

  9. Watson, K.: Two-temperature method for measuring emissivity. Remote Sens. Environ. 42(2), 117–121 (1992)

    Article  Google Scholar 

  10. Jiang, G.-M., Li, Z.-L., Nerry, F.: Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sens. Environ. 105(4), 326–340 (2006)

    Article  Google Scholar 

  11. Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B.: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998)

    Article  Google Scholar 

  12. Gao, B.-C.: NDWI–a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58(3), 257–266 (1996)

    Article  Google Scholar 

  13. Alsdorf, D.E., Rodriguez, E., Lettenmaier, D.P.: Measuring surface water from space. Rev. Geophys. 45(2) (2007)

    Google Scholar 

  14. Rebelo, L.-M., Finlayson, C.M., Nagabhatla, N.: Remote sensing and GIS for wetland inventory, mapping and change analysis. J. Environ. Manag. 90(7), 2144–2153 (2009)

    Article  Google Scholar 

  15. Chignell, S.M., Anderson, R.S., Evangelista, P.H., Laituri, M.J., Merritt, D.M.: Multi-temporal independent component analysis and landsat 8 for delineating maximum extent of the 2013 colorado front range flood. Remote Sens. 7(8), 9822–9843 (2015)

    Article  Google Scholar 

  16. Aswatha, S.M., Mukherjee, J., Biswas, P.K., Aikat, S.: Toward automated land cover classification in landsat images using spectral slopes at different bands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP(99), 1–9 (2016)

    Google Scholar 

  17. Mishra, R., Bahuguna, P., Singh, V.: Detection of coal mine fire in Jharia coal field using landsat-7 ETM+ data. Int. J. Coal Geol. 86(1), 73–78 (2011)

    Article  Google Scholar 

  18. Huo, H., Jiang, X., Song, X., Li, Z.-L., Ni, Z., Gao, C.: Detection of coal fire dynamics and propagation direction from multi-temporal nighttime landsat SWIR and TIR data: a case study on the Rujigou coal field, Northwest (NW) China. Remote Sens. 6, 1234–1259 (2014)

    Article  Google Scholar 

  19. Huo, H., Ni, Z., Gao, C., Zhao, E., Zhang, Y., Lian, Y., Zhang, H., Zhang, S., Jiang, X., Song, X., Zhou, P., Cui, T.: A study of coal fire propagation with remotely sensed thermal infrared data. Remote Sens. 7(3), 3088–3113 (2015)

    Article  Google Scholar 

  20. Using the USGS landsat8 product. https://landsat.usgs.gov/using-usgs-landsat-8-product. Accessed 29 Mar 2017

  21. Silleos, N.G., Alexandridis, T.K., Gitas, I.Z., Perakis, K.: Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 21(4), 21–28 (2006)

    Article  Google Scholar 

  22. Giannini, M.B., Belfiore, O.R., Parente, C., Santamaria, R.: Land surface temperature from landsat 5 TM images: comparison of different methods using airborne thermal data. J. Eng. Sci. Technol. Rev. 8, 83–90 (2015)

    Google Scholar 

  23. Sobrino, J.A., Caselles, V., Becker, F.: Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS J. Photogramm. Remote Sens. 44, 343–354 (1990)

    Article  Google Scholar 

  24. Watson, K.: Spectral ratio method for measuring emissivity. Remote Sens. Environ. 42(2), 113–116 (1992)

    Article  Google Scholar 

  25. Payan, V., Royer, A.: Analysis of temperature emissivity separation (TES) algorithm applicability and sensitivity. Int. J. Remote Sens. 25(1), 15–37 (2004)

    Article  Google Scholar 

  26. Pivovarník, M., Khalsa, S.J.S., Jiménez-Muñoz, J.C., Zemek, F.: Improved temperature and emissivity separation algorithm for multispectral and hyperspectral sensors. IEEE Trans. Geosci. Remote Sens. 55(4), 1944–1953 (2017)

    Article  Google Scholar 

  27. Earthdata Login. https://search.earthdata.nasa.gov/. Accessed 28 July 2017

  28. Singh, A., Raju, A., Pati, P., Kumar, N.: Mapping of coal fire in Jharia coalfield, India: a remote sensing based approach. J. Indian Soc. Remote Sens. 45, 369–376 (2016)

    Article  Google Scholar 

  29. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jit Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, J., Mukherjee, J., Chakravarty, D. (2018). Detection of Coal Seam Fires in Summer Seasons from Landsat 8 OLI/TIRS in Dhanbad. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics