Skip to main content

Recent Deep Learning Methods for Melanoma Detection: A Review

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 834))

Included in the following conference series:

Abstract

Melanoma is a type of skin cancer, which is not that common like basal cell and squamous carcinoma, but it has dangerous implications since it has the tendency to migrate to other parts of body. So, if it is detected at an early stage then we can easily treat; otherwise it becomes fatal. Many computer-aided diagnostic methods using dermoscopy images have been proposed to assist the clinicians and dermatologists. Along with conventional methods which extract the low level handcrafted features, nowadays researchers have focused towards deep learning techniques which extract the deep and more generic features. Since 2012, deep learning has been applied to classification, segmentation, localization and many other fields and made an impact. This paper reviews about the deep learning techniques to detect melanoma cases from the rest skin lesion in clinical and dermoscopy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Satheesha, T., Satyanarayana, D., Prasad, M.G., Dhruve, K.D.: Melanoma is skin deep: a 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J. Trans. Eng. Health Med. 5, 1–17 (2017)

    Article  Google Scholar 

  2. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA: A Cancer J. Clin. 67(1), 7–30 (2017)

    Google Scholar 

  3. Stolz, W., Riemann, A., Cognetta, A., Pillet, L., Abmayr, W., Holzel, D., Bilek, P., Nachbar, F., Landthaler, M.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma. Eur. J. Dermatol. 4(7), 521–527 (1994)

    Google Scholar 

  4. Menzies, S.W., Ingvar, C., Crotty, K.A., McCarthy, W.H.: Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch. Dermatol. 132(10), 1178–1182 (1996)

    Article  Google Scholar 

  5. Sáez, A., Acha, B., Serrano, C.: Pattern analysis in dermoscopic images. In: Scharcanski, J., Celebi, M. (eds.) Computer Vision Techniques for the Diagnosis of Skin Cancer, pp. 23–48. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39608-3_2

    Chapter  Google Scholar 

  6. Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 13(5), 721–733 (2009)

    Article  Google Scholar 

  7. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the abcd rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)

    Article  Google Scholar 

  8. Gutman, D., Codella, N.C., Celebi, E., Helba, B., Marchetti, M., Mishra, N., Halpern, A.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 (2016)

  9. Lee, T., Ng, V., Gallagher, R., Coldman, A., McLean, D.: Dullrazor®: a software approach to hair removal from images. Comput. Biol. Med. 27(6), 533–543 (1997)

    Article  Google Scholar 

  10. Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  11. Barata, C., Marques, J.S., Rozeira, J.: A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans. Biomed. Eng. 59(10), 2744–2754 (2012)

    Article  Google Scholar 

  12. Silveira, M., Nascimento, J.C., Marques, J.S., Marçal, A.R., Mendonça, T., Yamauchi, S., Maeda, J., Rozeira, J.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel. Top. Sig. Process. 3(1), 35–45 (2009)

    Article  Google Scholar 

  13. Marques, J.S., Barata, C., Mendonça, T.: On the role of texture and color in the classification of dermoscopy images. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4402–4405. IEEE (2012)

    Google Scholar 

  14. Barata, C., Ruela, M., Francisco, M., Mendonça, T., Marques, J.S.: Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst. J. 8(3), 965–979 (2014)

    Article  Google Scholar 

  15. Situ, N., Wadhawan, T., Yuan, X., Zouridakis, G.: Modeling spatial relation in skin lesion images by the graph walk kernel. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6130–6133. IEEE (2010)

    Google Scholar 

  16. Barata, C., Figueiredo, M.A.T., Celebi, M.E., Marques, J.S.: Local features applied to dermoscopy images: bag-of-features versus sparse coding. In: Alexandre, L.A., Salvador Sánchez, J., Rodrigues, J.M.F. (eds.) IbPRIA 2017. LNCS, vol. 10255, pp. 528–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58838-4_58

    Chapter  Google Scholar 

  17. Jafari, M.H., Samavi, S., Karimi, N., Soroushmehr, S.M.R., Ward, K., Najarian, K.: Automatic detection of melanoma using broad extraction of features from digital images. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 1357–1360. IEEE (2016)

    Google Scholar 

  18. Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J.: A color and texture based hierarchical k-nn approach to the classification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Medical Image Analysis, pp. 63–86. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5389-1_4

    Chapter  Google Scholar 

  19. Blum, A., Luedtke, H., Ellwanger, U., Schwabe, R., Rassner, G., Garbe, C.: Digital image analysis for diagnosis of cutaneous melanoma. development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br. J. Dermatol. 151(5), 1029–1038 (2004)

    Article  Google Scholar 

  20. Situ, N., Yuan, X., Chen, J., Zouridakis, G.: Malignant melanoma detection by bag-of-features classification. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 3110–3113. IEEE (2008)

    Google Scholar 

  21. Mishra, N.K., Celebi, M.E.: An overview of melanoma detection in dermoscopy images using image processing and machine learning. arXiv preprint arXiv:1601.07843 (2016)

  22. Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intell. Med. 56(2), 69–90 (2012)

    Article  Google Scholar 

  23. Yu, Z., Ni, D., Chen, S., Qin, J., Li, S., Wang, T., Lei, B.: Hybrid dermoscopy image classification framework based on deep convolutional neural network and fisher vector. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 301–304. IEEE (2017)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  26. Karpathy, A.: Cs231n: Convolutional neural networks for visual recognition. Neural Networks 1 (2016)

    Google Scholar 

  27. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  28. LeCun, Y., et al.: Lenet-5, convolutional neural networks (2015). http://yann.lecun.com/exdb/lenet

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  30. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993 (2016)

  34. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  35. Sabbaghi, S., Aldeen, M., Garnavi, R.: A deep bag-of-features model for the classification of melanomas in dermoscopy images. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 1369–1372. IEEE (2016)

    Google Scholar 

  36. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, pp. 791–798. ACM (2007)

    Google Scholar 

  37. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  38. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. arXiv preprint arXiv:1703.02910 (2017)

  39. Argenziano, G., Soyer, H., De Giorgi, V., Piccolo, D., Carli, P., Delfino, M., et al.: Dermoscopy: a tutorial. EDRA, Medical Publishing & New Media, p. 16 (2002)

    Google Scholar 

  40. Habif, M.T.: Dermnet skin diseases Atlas (1998)

    Google Scholar 

  41. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: Ph 2-a dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), PP. 5437–5440. IEEE (2013)

    Google Scholar 

  42. Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1710.05006 (2017)

  43. Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M.F., Petkov, N.: Med-node: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 42(19), 6578–6585 (2015)

    Article  Google Scholar 

  44. Ge, Z., Demyanov, S., Bozorgtabar, B., Abedini, M., Chakravorty, R., Bowling, A., Garnavi, R.: Exploiting local and generic features for accurate skin lesions classification using clinical and dermoscopy imaging. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), PP. 986–990. IEEE (2017)

    Google Scholar 

  45. Lopez, A.R., Giro-i Nieto, X., Burdick, J., Marques, O.: Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), pp. 49–54. IEEE (2017)

    Google Scholar 

  46. Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F.V., Avila, S., Valle, E.: Knowledge transfer for melanoma screening with deep learning. arXiv preprint arXiv:1703.07479 (2017)

  47. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  48. Kawahara, J., BenTaieb, A., Hamarneh, G.: Deep features to classify skin lesions. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1397–1400. IEEE (2016)

    Google Scholar 

  49. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  50. Demyanov, S., Chakravorty, R., Abedini, M., Halpern, A., Garnavi, R.: Classification of dermoscopy patterns using deep convolutional neural networks. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 364–368. IEEE (2016)

    Google Scholar 

  51. Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S.M.R., Jafari, M.H., Ward, K., Najarian, K.: Melanoma detection by analysis of clinical images using convolutional neural network. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 1373–1376. IEEE (2016)

    Google Scholar 

  52. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)

    Article  Google Scholar 

  53. Kawahara, J., Hamarneh, G.: Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 164–171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_20

    Chapter  Google Scholar 

  54. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 118–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_15

    Chapter  Google Scholar 

  55. Codella, N.C., Nguyen, Q.B., Pankanti, S., Gutman, D., Helba, B., Halpern, A., Smith, J.R.: Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 61(4), 1–5 (2017)

    Article  Google Scholar 

  56. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazneen N. Sultana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sultana, N.N., Puhan, N.B. (2018). Recent Deep Learning Methods for Melanoma Detection: A Review. In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-0023-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0023-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0022-6

  • Online ISBN: 978-981-13-0023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics