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Abstract

Neuroblastoma is the most common extra cranial
solid tumour in children. The histology of neuroblas-
toma has high intra-class variation, which misleads
existing computer-aided histological image classifica-
tion methods that use global features. To tackle this
problem, we propose a new Patched Completed Lo-
cal Binary Pattern (PCLBP) method combining Sign
Binary Pattern (SBP) and Magnitude Binary Pat-
tern (MBP) within local patches to build feature vec-
tors which are classified by k-Nearest Neighbor (k-
NN) and Support Vector Machine (SVM) classifiers.
The advantage of our method is extracting local fea-
tures which are more robust to intra-class variation
compared to global ones. We gathered a database of
1043 histologic images of neuroblastic tumours clas-
sified into five subtypes. Our experiments show the
proposed method improves the weighted average F-
measure by 1.89% and 0.81% with k-NN and SVM
classifiers, respectively.

Keywords: neuroblastic tumour, neuroblastoma, clas-
sification, binary pattern, local patch, image analysis,
computer-aided diagnosis (CAD)

1 Introduction

Neuroblastoma is the most common extra cranial
solid tumour in children less than five years of age.
More than 15% of childhood cancer deaths are the
result of neuroblastic tumours (Park et al. 2008). Op-
timal management of neuroblastic tumours depends
on many factors, including histopathological classifi-
cation. Histological classification is performed by a
medical laboratory doctor who diagnoses tumours by
examining thin slices of tissue on a glass slide using an
optical microscope. Pathologists commonly use the
Shimada system (Shimada et al. 1999) which iden-
tifies six morphologic categories of neuroblastic tu-
mour. Computer image analysis of tumours has been
shown to improve diagnostic efficiency and consis-
tency (Hipp et al. 2011), and identify previously un-
recognized image features that predict prognosis (Yu
et al. 2016). Existing methods of computer-aided di-
agnosis (CAD) for classification of histological im-
ages, thin slices of tissue mounted on a glass slide
and viewed with a microscope, are divided into two
categories: segmentation-based methods and feature-
based methods. Segmentation-based methods rely on
morphological features such as symmetry. Feature-
based methods try to extract mathematical features
from the histological images and classify them with-
out segmentation (Boucheron 2008).

There are several factors that hinder the classi-
fication of neuroblastoma histological images based

on segmentation methods. First of all, different cells
in neuroblastoma histopathological images have vari-
ations in illumination. Second, they have different
shapes within the same classification group which
show the high intra-class variation of neuroblastoma.
In general, classification methods using segmentation
may fail to detect nuclei and the different cells in im-
ages because they segment different cells based on
illumination and shape. All existing feature-based
classification methods used global features, extracted
from the whole image, which are sensitive to intra-
class variations. To our best knowledge, there is no
feature-based method to address the intra-class vari-
ation problem in neuroblastoma histological image
classification.

This paper proposes a local feature extraction
method for classification of neuroblastoma histologi-
cal images to tackle the intra-class variation problem.
The contributions of this paper are:

1. We develop Patched Completed Local Binary
Pattern (PCLBP) based on Completed Local Bi-
nary Pattern (CLBP) (Guo et al. 2010) for clas-
sification of neuroblastoma histological images
with intra-class variation.

2. We apply PCLBP on neuroblastoma histological
images with a complex histology to classify them
into five different categories.

3. We evaluate our method by comparing with a
state-of-the-art benchmark which shows the ef-
fectiveness of our method in the classification of
neuroblastoma histological images.

The rest of this paper is as follows. Section 2
presents related work. Section 3 describes the gath-
ered dataset. Section 4 presents the proposed Patch
Completed Local Binary Pattern. Section 5 shows
the experimental results. Section 6 presents the dis-
cussion and finally Section 7 concludes the work.

2 Related Work

Most proposed techniques for classification of histo-
logical images rely on morphological features (Veta
et al. 2014). However, variability of illumination
and appearance of different cells in the images makes
classification based on segmentation more challeng-
ing. Lee & Street (2003) proposed an automated
system for segmentation and classification of breast
cancer’s nuclei. Mohammed et al. (2013) segmented
blood cell images using watershed technique to iden-
tify chronic lymphocytic leukemia by extraction of
nucleus and cytoplasm mask. Cosatto et al. (2008)
classified breast cancer images using nuclei shape and
size. Nguyen et al. (2011) classified nuclei into nor-
mal and cancer based on appearance and identified



Figure 1: Neuroblastic tumour categories: (a) undifferentiated neuroblastoma, (b) poorly-differentiated neu-
roblastoma, (c) differentiating neuroblastoma, (d) ganglioneuroma, and (e) ganglioneuroblastoma

the cancer glands in prostate cancer. Sharma et al.
(2015) segmented nuclei and classified with AdaBoost
based on intensity and morphological features of nu-
clei.

Kong et al. (2009) classified neuroblastoma
into three categories: undifferentiated, poorly-
differentiated, and differentiating. They segmented
the images at each resolution level into cellular,
neuropil, and background elements and classified
neuroblastoma histological images by integrating
classifiers such as Linear Discriminative Analysis
(LDA) (Lehmann 1998), Support Vector Machine
(SVM) (Cortes & Vapnik 1995), and k-Nearest Neigh-
bor (k-NN) (Cover & Hart 1967). Tafavogh et al.
(2014) proposed a four stage algorithm to classify
neuroblastoma tumour images into undifferentiated
and poorly-differentiated using the Otsu segmenta-
tion technique (Otsu 1979). The whole slide image
was partitioned. Intensity variation was reduced us-
ing an image enhancement technique, regions of inter-
est were segmented by thresholding techniques and
histological images were classified using rules based
on the Shimada scheme.

In some applications, feature extraction has been
used to classify histological images. All of the existing
methods extracted global features which are sensitive
to intra-class variation. Tabesh et al. (2007) classified
prostate tissue into tumour and non-tumour based
on color, texture, and morphologic features. Qureshi
et al. (2008) classified meningioma using wavelet
package transform and Local Binary Patterns (Ojala
et al. 2002). Zhang et al. (2013) used a combination of
curvelet transform, gray level co-occurrence matrix,
and the Completed Local Binary Patterns (CLBP) as
features to stratify breast cancer tumours from histo-

logical images. Farjam et al. (2007) used texture fea-
tures to identify the glandular elements within images
of prostate tissue. They applied k-means to cluster
the image components. Spanhol et al. (2016) applied
a completed modeling of the Local Binary Pattern
(LBP), based on three components extracted from
the 8-neighborhood: center pixel, sign, and magni-
tude. The center pixel is coded into a binary bit after
global thresholding. The difference signs and mag-
nitudes are coded in binary format so that they can
be combined to form the final Completed Local Bi-
nary Pattern histograms. Spanhol et al. (2016) used
the combination of Completed Local Binary Patterns
with k-NN and SVM to classify a large dataset of
breast cancer histological images into benign and ma-
lignant classes. Classification of neuroblastoma histo-
logical images remains challenging due to the intra-
class variation.

3 Dataset

There is a lack of large and publicly available im-
age datasets for analysis of neuroblastic tumours,
which significantly hinders development and valida-
tion of methods. Therefore, we gathered a dataset
of images from neuroblastic tumours. Tumour ac-
cess is compliant with local policy, national legisla-
tion, and ethical mandates to use the human tissue
in research. All patient specific details were removed
and a de-identified dataset was used for this research.
The initial dataset consisted of images of tissue mi-
croarrays (TMA) of neuroblastic tumours, scanned by
the Aperio ScanScope system. Each slide was com-
posed of 20 to 40 1.2mm cores of neuroblastic tumour,
stained with haematoxylin and eosin (H&E) and cut



Figure 2: Quantitative actual size of tissue spots and cropped images

Table 1: Number of different categories of neuroblastic tumour cropped images

Category of Neuroblastic
Tumour

Number of
Cropped Images

Number of
Patients

poorly-differentiated 571 77
differentiating 187 12

undifferentiated 155 10
ganglioneuroma 84 18

ganglioneuroblastoma 46 8

Total 1043 125

at 3µm. In this method, the contrast between dif-
ferent cells which have different colors is increased.
Staining with H&E allows observation of histological
structures. TMA images were in svs format with res-
olution 0.2µm, images were viewed and extracted us-
ing ImageScope software (ImageScope 2016). Tissue
cores were classified by experts into five different cate-
gories: poorly-differentiated, differentiating, undiffer-
entiated, ganglioneuroma, and ganglioneuroblastoma,
according to the Shimada classification system. Rep-
resentative images in the categories are shown in Fig-
ure 1.

Areas best representative of each category, and de-
void of artefacts, were selected from each tissue core
by an expert histopathologist. At 40× magnification,
cropped image size was 300×300 pixels with real size
80 × 80µm which is approximately one third of the
area of an optical microscope high power field of view.
Figure 2 shows the quantitative actual size of tissue
spots and cropped images.

This size was chosen as a compromise between be-
ing large enough to capture diagnostic features of each
category and small enough for computational cost.
Numbers of images in our dataset are given in Table 1.
It is much larger in terms of patients and images than
the datasets used by Tafavogh et al. (2014) and Kong
et al. (2009). Moreover, the intra-class variation of
neuroblastoma cells in the gathered dataset is very
high which means different cells in neuroblastoma his-
tological images within the same patients in the same
class have different shapes. An example of the high
intra-class variation of differentiating neuroblastoma
is shown in Figure 3. As can be seen, both of them
are differentiating type but their cells have different
shapes.

4 Patch Completed Local Binary Pattern
(PCLBP)

Before describing our PCLBP algorithm, we first de-
scribe the algorithm it is based on Completed Local
Binary Pattern (CLBP) is one of the latest variants
of Local Binary Pattern (LBP) (Ojala et al. 2002).
The LBP operator computes the distribution of bi-
nary patterns in the circular neighborhood character-
ized by a radius R and a number of neighbors P . The
idea is to threshold neighboring pixels, compared to
the central pixel to the P neighbors. If the intensity
of a neighbor pixel is greater than or equal to that
of the central pixel the value 1 is assigned, other-
wise 0. Therefore, a binary pattern is obtained from
the neighborhood. The LBP function at pixel p is
(from (Ojala et al. 2002))

LBP (f(X,Y )) =

P−1∑
i=0

2i · u(f(Xi, Yi)−f(X,Y ))

(1)

where f(Xi, Yi) and f(X,Y ) are grey levels of pixels
(Xi, Yi) and (X,Y ) and u(·) is the unit step function.
The CLBP is a completed modeling of LBP (Guo
et al. 2010) which is based on three components ex-
tracted from the local region: center pixel, sign, and
magnitude. The center pixel is coded by a binary
code after thresholding, with the threshold set as the
average grey level of the whole image. For computing
the sign and magnitude, a neighborhood of radius R
and number of neighbors P is considered. Signs and
magnitudes are computed and coded by a specific op-
erator into the binary format so that they can be
combined to form the final CLBP histograms (Guo



Figure 3: An example of high intra-class variation of differentiating neuroblastoma

Figure 4: The scheme of the proposed method

et al. 2010).
Our approach, Patched Completed Local Binary

Pattern (PCLBP), extends CLBP. The overall frame-
work consists of four stages as shown in Figure 4.
First, the images are partitioned into equal-sized
square patches. Second, Sign Binary Patterns (SBPs)
and Magnitude Binary Patterns (MBPs) are com-
puted within patches. Third, histograms of SBPs and
MBPs are computed and concatenated to build a fea-
ture vector for each patch. A feature vector for the
whole image is created by concatenating the feature
vectors of all patches. Finally, the input image is clas-
sified by comparing the related feature vector with the
feature vectors of all images in the gallery. Following
we describe the algorithm in detail.

Given an N × N pixel input image, we partition
it into W × W pixel non-overlapping patches. We
indicate all points in the patch with p and q indices,
ranging from 1 to N/W , as

p =

⌊
X

W

⌋
+ 1, q =

⌊
Y

W

⌋
+ 1 (2)

where 0 ≤ X ≤ N and 0 ≤ Y ≤ N are the coor-
dinates of the input neuroblastoma image and b·c is
the floor function. The (p,q)th patch in the input
neuroblastoma image (see Figure 5) is defined as

fp,q(Xpq, Y pq) = f(W (p−1)+Xpq,W (q−1)+Y pq)
(3)

where f(X,Y ) denotes the original image. Xpq, Y pq

denote the coordinate of the (p,q)th patch.

Figure 5: Coordinates in the patched image. Here,
we assume W = N/2

The local differences of the 8-neighborhood around
(Xpq

0 , Y pq
0 ), see Figure 6, are computed as



f ′p,q,k(Xpq
0 , Y pq

0 ) =

fp,q(Xpq
k , Y pq

k )− fp,q(Xpq
0 , Y pq

0 ); k = 1, . . . , 8 (4)

Figure 6: An 8-neighborhood around (Xpq
0 , Y pq

0 )

The SBP of the (p,q)th patch,
SBPp,q(fp,q(Xpq

0 , Y pq
0 )), is defined as the con-

catenation of 8 bits as

SBPp,q(fp,q(Xpq
0 , Y pq

0 )) ={
u(f ′p,q,1(Xpq

0 , Y pq
0 )), . . . , u(f ′p,q,8(Xpq

0 , Y pq
0 ))

}
(5)

where u(x) is the unit step function:

u(x) =

{
1 if x ≥ 0
0 if x < 0 (6)

and the MBP for the (p,q)th patch is defined as

MBPp,q(fp,q(Xpq
0 , Y pq

0 )) =

{u(f ′p,q,1(Xpq
0 , Y pq

0 )−m), . . . ,

u(f ′p,q,8(Xpq
0 , Y pq

0 )−m)} (7)

where m is a threshold to be set as the average of the
absolute values of all derivatives in the neuroblastoma
image.

After computing the SBP and the MBP, they are
converted into decimal values as

DSBPp,q(fp,q(Xpq
0 , Y pq

0 )) =

8∑
l=1

2l−1SBP l
p,q(fp,q(Xpq

0 , Y pq
0 )) (8)

DMBPp,q(fp,q(Xpq
0 , Y pq

0 )) =

8∑
l=1

2l−1MBP l
p,q(fp,q(Xpq

0 , Y pq
0 )) (9)

where SBP l
p,q(fp,q(Xpq

0 , Y pq
0 )) and

MBP l
p,q(fp,q(Xpq

0 , Y pq
0 )) denotes the l-th bit of

the SBP and the MBP, respectively. DSBP and
DMBP for each pixel in the neuroblastoma image
are computed. Figure 7 shows an example of DMBP

Figure 7: An example of computed Magnitude Binary
Pattern (MBP) and Sign Binary Pattern (SBP): (a)
original image, (b) MBP, and (c) SBP. The optimal
patch size (W ) is 60 Pixels. Here, we assumeW = 150
pixels for better visualization.

and DSBP in an arbitrary neuroblastoma image. For
each patch, we model the distribution of DSBP and
DMBP using the histogram operator with 256 bins
as

HSBPp,q(fp,q(X,Y )) = H{DSBPp,q(fp,q(X,Y ))}
(10)

HMBPp,q(fp,q(X,Y )) = H{DMBPp,q(fp,q(X,Y ))}
(11)

We concatenate the histograms of the SBP and the
MBP for each patch to build a Local Histogram (LH)
for each patch

LHp,q(fp,q(x, y)) =

{HSBPp,q(fp,q(x, y)), HMBPp,q(fp,q(x, y))} (12)

Then, we concatenate the histograms of all patches
to build the Patch Completed Local Binary Pattern
for the neuroblastoma image (as shown in Figure 8)

PCLBP = {LHp,q(fp,q(X,Y )) |p, q = 1, ..., N/W}
(13)

Finally, two algorithms are used to classify the ex-
tracted PCLBPs: k-NN (Cover & Hart 1967) and
SVM (Cortes & Vapnik 1995).

5 Experimental Results

In this section, we evaluate the performance of
the proposed method for classification of neuroblas-
toma histological images. Experiments are conducted
on the collected neuroblastic tumour database.



Figure 8: Concatenation of patches’ histograms: (a) patched image, (b) histogram of patches, and (c) concate-
nation of patches’ histograms.

Figure 9: Accuracy of k-NN classifier versus patch width (W ) and k in parameter tuning of k-NN classifier

The database is divided randomly into two sub-
sets: parameter-tuning (211 images) and validation
datasets (832 images). We select the optimum values
for free parameters using the training dataset and fix
them for the validation. Then, we evaluate the system
using the validation dataset and selected parameters.

5.1 Parameter Tuning

We divide the parameter-tuning dataset into train-
ing (150 images) and testing (61 images) subsets. We
train the algorithm using the training set with differ-
ent parameter values, test using the testing set and
compute the accuracies. To have a better estima-
tion of the accuracy, we repeat the above procedure
multiple (10) times and compute the average over all
experiments.

For k-NN, the free parameters are the width of the
patch (W ) and the k numbers of neighbours. Accu-
racy was computed for k ranging from 1 to 10 and
patch width W ∈ {10, 15, 30, 50, 60, 75, 100, 150, 300}
and the results are shown in Figure 9. Best accuracy
of 72.7% was found with W=60 and k=5. So we used
these values in the next experiments.

For SVM, we used the C-SVC type (Boser et al.
1992) using LIBSVM tool (Chang & Lin 2011) and
tested different kernels: linear, polynomial, Radial
Basis Function (RBF), and sigmoid. Table 2 shows

accuracies using different kernels. As can be seen,
the best result is achieved using the RBF kernel, so
we selected it for the next experiments. RBF param-
eter γ was empirically defined through experiments
with best value taking 1/256 (256 is the number of
different intensities in the images).

Table 2: Average classification accuracy of SVM over
neuroblastic tumour dataset using different kernel
functions

Kernel Classification Accuracy (%)

Linear 62.22

Polynomial 71.82

Radial Basis Function 72.33

Sigmoid 49.45

5.2 System Validation

Here, we use the remaining 80% of the dataset which
is not seen in the parameter tuning phase. It is di-
vided into training (623 images) and validation (209



Figure 10: Comparison between our algorithm (PCLBP) and Spanhol’s system (CLBP)

Table 3: Weighted average precision, recall, and F-measure obtained by our system and Spanhol’s system.

Our system (PCLBP)(%) Spanhol’s system (CLBP)(%)

Precision-kNN 70.49±3.37 68.22±3.23
Precision-SVM 75.59±3.15 74.1±2.35

Recall-kNN 71.02±2.87 69.53±2.81
Recall-SVM 76.35±3.41 76.25±2.23

F-measure-kNN 70.75±3.09 68.86±6.04
F-measure-SVM 75.96±3.27 75.15±2.28

images) sets. We train the algorithm using the train-
ing set (with the parameter values selected in Sec-
tion 5.1) and test using the validation set. We repeat
this procedure multiple (10) times and report the av-
erage accuracy. Algorithm performance for k-NN and
SVM is reported with the average F-measure, recall,
and precision (Powers 2011) weighted by number of
examples in each of the five classes. Distribution of
the computed F-measures for the two classifiers and
feature extraction approaches over the ten trials is
presented in Figure 10 and shows that SVM works
better than k-NN. The t-test with P value = 0.03
and α=0.05 (significance level) shows that combina-
tion of our algorithm with SVM classifier significantly
improves the accuracy of classification in comparison
with k-NN classifier. Table 3 indicates that our al-
gorithm obtains approximately 5% higher accuracy
when it is combined with SVM classifier compared
to the k-NN classifier. We also test the CLBP algo-
rithm (Spanhol et al. 2016) on the test images as a
benchmark, again reporting the weighted average of
precision, recall, and F-measure. Table 3 reports the
weighted average precision, recall, and F-measure of
our system and Spanhol’s system. The weighted av-
erage precision, recall, and F-measure of our system
are better than Spanhol’s system.

6 Discussion

The proposed algorithm is a new feature extraction
method to classify neuroblastoma histological images
into five different groups. Although a large number
of methods have been proposed in the literature, our
system has multiple advantages over these systems:

1. There is no feature based method to classify
histological images into more than two cate-
gories. They were classified more straightforward
to binary classification. However, the proposed
method can classify neuroblastoma tumour im-

ages to five different categories.

2. Neuroblastoma has a complex texture with a
great deal of complicated features compared to
other types of cancer such as breast cancer. It
is the first time that neuroblastoma histological
images are classified into five different categories
using a feature extraction method.

3. The proposed method extract features within
small patches which are not easily detected by
human eyes.

7 Conclusion

We proposed a new Patched Completed Local Binary
Pattern (PCLBP) to classify neuroblastic tumours
into five different categories using extracted feature
vectors from histological images. The algorithm built
the feature vector by extraction of SBP and MBP
within local patches. The advantage of the proposed
method is extraction of local features which are more
robust to intra-class variation compared to global fea-
ture extraction. The evaluation was conducted on a
gathered dataset with 1043 cropped images from sam-
ples of five different categories. We compare the re-
sults obtained by our system with the state-of-the-art.
Results indicate that the proposed method has im-
proved the average weighted F-measure for k-NN and
SVM by 1.89% and 0.81%, respectively, compared to
the benchmark.
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