Skip to main content

MIC for Analyzing Attributes Associated with Thai Agricultural Products

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 848))

Abstract

A prediction system of Thai agricultural products will purpose as our future work. The large amount of data is necessary and precise to predict the trend. Due to the high-efficiency prediction, only the associated attributes are preferred and well prepared in the next process. MIC is one statistical method to measure a correlation coefficient of pairwise variables on an immense dataset. After that their correlation coefficient shows the ranking of variables relationship. Thus, the pre-processing of data is done before executing. In this paper will present the theoretical of MIC and related works. The general concepts of MIC and the special ideas will be described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Székely, G.J., Rizzo, M.L.: Brownian distance covariance. Annal. Appl. Stat. 3(4), 1236–1265 (2009)

    Article  MathSciNet  Google Scholar 

  2. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Annal. Stat. 35(6), 2769–2794 (2007)

    Article  MathSciNet  Google Scholar 

  3. A comparison of the pearson and spearman correlation methods (2016). http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/

  4. Huang, Y., Luo, T., Wang, X., Hui, K., Wang, Wen-Jie, He, Ben: On evaluating query performance predictors. In: Zu, Q., Vargas-Vera, M., Hu, B. (eds.) ICPCA/SWS 2013. LNCS, vol. 8351, pp. 184–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09265-2_20

    Chapter  Google Scholar 

  5. Mukaka, M.M.: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24(3), 69–71 (2012)

    Google Scholar 

  6. Benesty, J., Huan, Y., Chen, J.: Pearson correlation coefficient. In: Benesty, J., Huan, Y., Chen, J. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, pp. 1–4. Springer, Heidelberg (2009)

    Google Scholar 

  7. Wang, S., Yuan, H.: Spatial data mining: a perspective of big data. Int. J. Data Warehous. Min. 10(4), 50–70 (2014)

    Article  Google Scholar 

  8. Li, D., Wang, S., Li, D.: Spatial Data Mining: Theory and Application. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48538-5

    Book  Google Scholar 

  9. Reshef, D.N., et al.: Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011)

    Article  Google Scholar 

  10. Wang, S., et al.: Fast search local extremum for maximal information coefficient (MIC). J. Comput. Appl. Math. 327, 372–387 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wei, Z.Q., Hong-Zhe, X.U., Wen, L.I., et al.: Bayesian network structure learning algorithm based on maximal information coefficient. Appl. Res. Comput. (2014)

    Google Scholar 

  12. Zhang, Y., Zhang, W., Xie, Y.: Improved heuristic equivalent search algorithm based on maximal information coefficient for bayesian network structure learning. Neurocomput. J. 117(14), 186–195 (2013)

    Article  Google Scholar 

  13. Zeng, Q.Q., Zeng, A., Pan, D., et al.: Bayesian network structure learning algorithm based on maximal information coefficient. Comput. Eng. J. 43(8), 225–230 (2017)

    Google Scholar 

  14. Zeng, A., Zheng, Q.M.: Deep belief networks research based on maximum information coefficient. Comput. Sci. J. (2016)

    Google Scholar 

  15. Lei, L.I., Liu, J., Zhang, H.K.: Topics identification and evolution trend of network public opinion based on co-occurrence analysis. Inf. Sci. J. (2016)

    Google Scholar 

  16. Wang, P., Zhang, S.C.: Method for the correlation analysis of data with time delay based on maximal information coefficient. Lectron. Measur. Technol. 9, 112–115 (2015)

    Google Scholar 

  17. Liu, H., Rao, N., Yi, L., et al.: Maximal information coefficient on identifying differentially expressed genes of permanent atrial fibrillation. Chin. J. Biomed. Eng. 34, 8–16 (2015)

    Google Scholar 

  18. Zhou, S.P., Chen, J., Liu, C., et al.: Assessment method of power system static voltage stability margin. Electron. Des. Eng. 6, 066 (2014)

    Google Scholar 

  19. Fan, Y.R., Huang, G.H., Li, Y.P., et al.: Development of PCA-based cluster quantile regression (PCA-CQR) framework for streamflow prediction. J. Appl. Xiangxi River Watershed, Appl. Soft Comput. 51, 280–293 (2017)

    Article  Google Scholar 

  20. Sun, Y., Kirley, M., Halgamuge, S.: Quantifying variable interactions in continuous optimization problems. IEEE Trans. Evol. Comput. 1–1, 99 (2016)

    Google Scholar 

  21. Li, Y.J., Zhang, Y.H.: Detecting measure for trivariate one-dimensional manifold dependences. Acta Electronica Sinica 44, 639–645 (2016)

    Google Scholar 

  22. Reshef, Y.A., et al.: Theoretical foundations of equitability and the maximal information coefficient. arXiv preprint arXiv:1408.4908 (2014)

  23. Kinney, J.B., Atwal, G.S.: Equitability, mutual information, and the maximal information coefficient. Proc. Nat. Acad. Sci. 111(9), 3354–3359 (2014)

    Article  MathSciNet  Google Scholar 

  24. Reshef, D., et al.: Equitability analysis of the maximal information coefficient, with comparisons. arXiv preprint arXiv:1301.6314 (2013)

  25. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  26. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Sci. 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  27. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  28. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. In: Data Mining, Inference, and Prediction, Guide to Biometrics. Springer, Heidelberg (2002)

    Google Scholar 

  29. Speed, T.: Mathematics, a correlation for the 21st century. Sci. J. 334(6062), 1502–1503 (2011)

    Article  Google Scholar 

  30. Kinney, J.B., Atwal, G.S.: Equitability, mutual information, and the maximal information coefficient. Proc. Nat. Acad. Sci. U.S.A 111(9), 3354 (2014)

    Article  MathSciNet  Google Scholar 

  31. Delicado, P., Smrekar, M.: Measuring non-linear dependence for two random variables distributed along a curve. Stat. Comput. 19(3), 255 (2009)

    Article  MathSciNet  Google Scholar 

  32. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  MathSciNet  Google Scholar 

  33. Moon, Y.-I., Rajagopalan, B., Lall, U.: Estimation of mutual information using kernel density estimators. Phys. Rev. E 52(3), 2318 (1995)

    Article  Google Scholar 

  34. Rényi, A.: On measures of dependence. Acta mathematica hungarica 10(3–4), 441–451 (1959)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Plan of China (2016YFB0502604, 2016YFC0803000), National Natural Science Fund of China (61472039), and Frontier and Interdisciplinary Innovation Program of Beijing Institute of Technology (2016CX11006), International Scientific and Technological Cooperation and Academic Exchange Program of Beijing Institute of Technology (GZ2016085103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tisinee Surapunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surapunt, T., Liu, C., Wang, S. (2018). MIC for Analyzing Attributes Associated with Thai Agricultural Products. In: Yuan, H., Geng, J., Liu, C., Bian, F., Surapunt, T. (eds) Geo-Spatial Knowledge and Intelligence. GSKI 2017. Communications in Computer and Information Science, vol 848. Springer, Singapore. https://doi.org/10.1007/978-981-13-0893-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0893-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0892-5

  • Online ISBN: 978-981-13-0893-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics