Skip to main content

Inspection–Maintenance-Based Availability Optimization of Feeder Section Using Particle Swarm Optimization

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 816))

Abstract

Proper maintenance is important for reliable and efficient operation of the distribution system. The time duration after which the maintenance is required in the distribution system is important to identify. A methodology on PSO for evaluating the optimum value of inspection and maintenance is developed. Optimum value of duration between two inspections is obtained. The cost function and optimization constraints have also been considered. Two sample power systems were used for implementation of this problem. The output received is compared with other variants of particle swarm optimization (PSO) such as bare bones PSO (BBPSO), coordinated aggregation-based PSO (CAPSO), enhanced leader PSO (ELPSO).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( T_{c} \) :

Cycle time

\( t_{\text{ins}} \) :

Inspection duration

\( t_{\text{er}} \) :

Repair time expected

\( \tau \) :

Period between inspections

\( c_{i} \) :

Cost coefficient

\( \tau_{i} \) :

Interval between inspection and repair

\( {\text{NC}} \) :

Number of sections

\( {\text{NLP}} \) :

Load points

\( U_{k} \) :

Unavailability

\( U_{d - k} \) :

Unavailability threshold value

\( A_{K} \) :

Availability

\( w \) :

Inertia weight

\( {\text{rand}}_{ 1} ,\,{\text{rand}}_{ 2} \) :

Random digits

\( c_{1} ,\,c_{2} \) :

Coefficients of acceleration

\( {\text{iter}}_{ \hbox{max} } \) :

Maximum number of iteration

\( w_{\hbox{max} } \) :

Maximum value specified for inertia weight

\( w_{ \hbox{min} } \) :

Minimum value specified for inertia weight

References

  1. Elmakias, D.: New Computational Methods in Power System Reliability. Springer International Edition (2000)

    Google Scholar 

  2. Gertsbakh, I.: Reliability Theory with Applications to Preventive Maintenance. Springer International Edition (2000)

    Google Scholar 

  3. Gangel, M.W., Ringlee, R.J.: Distribution system reliability performance. IEEE Trans. PAS-1968 87(7), 1657–1665 (1968)

    Article  Google Scholar 

  4. IEEE Committee Report, Bibliography on the application of probability methods in power system reliability evaluation. IEEE Trans. Power Appar. Syst. PAS-91, 649–660 (1972)

    Google Scholar 

  5. IEEE Committee Report, Bibliography on the application of probability methods in power system reliability evaluation, 1971–1977. IEEE Trans. Power Appar. Syst. PAS-97, 2235–2242, (1978)

    Google Scholar 

  6. Allan, R.N., Dialynas, E.N., Homer, I.R.: Modelling and evaluating the reliability of distribution systems. IEEE Trans. Power Appar. Syst. PAS-98, 2181–2189 (1979)

    Article  Google Scholar 

  7. Billinton, R., Allan, R.N.: Reliability Evaluation of Engineering Systems. Springer International Edition (1992)

    Google Scholar 

  8. Pereira, M.V.F., Pinto, L.M.V.G.: A new computational tool for composite reliability evaluation. IEEE Trans. PAS 7(1), 258–263 (1992)

    Google Scholar 

  9. Billinton, R., Allan, R.N.: Reliability Evaluation of Power System. Springer International Edition (1996)

    Google Scholar 

  10. Allan, R.N., Billinton, R.: Probabilistic assessment of power systems. Proc. IEEE 88(2), 140–162 (2000)

    Article  Google Scholar 

  11. Pereira, M.V.F., Pinto, L.M.V.G.: A new computational tool for composite reliability evaluation. IEEE Trans. Power Syst. 7(1), 258–264 (1992)

    Article  Google Scholar 

  12. Su, C.T., Lii, G.R.: Reliability design of distribution systems using modified genetic algorithms. Electr. Power Syst. Res. 60, 201–206 (2002)

    Article  Google Scholar 

  13. Chang, W.F., Wu, Y.C.: Optimal reliability design in an electrical distribution system via polynomial-time algorithm. Int. J. Electr. Power Energy Syst. 25(8), 659–666 (2003)

    Article  Google Scholar 

  14. Popov, V.A., Canha, L.N., Farret, F.A., Abaide, A.R., Rodrigues, M.G., Bernardon, D.P., Konig, A.L., Comassetto, L., Licht, A.P.: Algorithm of reliability optimization for operational planning of distribution systems. In: IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, pp. 523–528 (2004)

    Google Scholar 

  15. Meziane, R., Massim, Y., Zeblah, A., Ghoraf, A., Rahli, R.: Reliability optimization using ant colony algorithm under performance and cost constraints. Electr. Power Syst. Res. 76, 1–8 (2005)

    Article  Google Scholar 

  16. Sohn, J.M., Nam, S.R., Park, J.K.: Value-based radial distribution system reliability optimization. IEEE Trans. Power Syst. 21(2), 941–947 (2006)

    Article  Google Scholar 

  17. Bakkiyaraj, A., Kumarappan, N.: Optimal reliability planning for a composite electric power system based on Monte Carlo simulation using particle swarm optimization. Int. J. Electr. Power Energy Syst. 47, 109–116 (2013)

    Article  Google Scholar 

  18. Louit, D., Pascual, R., Banjevic, D.: Optimal interval for major maintenance actions in electricity distribution networks. Int. J. Electr. Power Energy Syst. 31(7–8), 396–401 (2009)

    Article  Google Scholar 

  19. Dehghanian, Payman, Fotuhi-Firuzabad, Mahmud, Aminifar, Farrokh, Billinton, Roy: A comprehensive scheme for reliability centered maintenance in power distribution systems—part I: methodology. IEEE Trans. Power Deliv. 28, 761–770 (2013)

    Article  Google Scholar 

  20. Martinez-Velasco, Juan A., Guerra, Gerardo: Parallel Monte Carlo approach for distribution reliability assessment. IET Gener. Transm. Distrib. 8, 1810–1819 (2014)

    Article  Google Scholar 

  21. Huda, A.S.N., Živanović, R.: Accelerated distribution systems reliability evaluation by multilevel Monte Carlo simulation: implementation of two discretisation schemes. IET Gener. Transm. Distrib. 11, 3397–3405 (2017)

    Article  Google Scholar 

  22. Adefarati, T., Bansal, R.C.: Reliability assessment of distribution system with the integration of renewable distributed generation. Appl. Energy 185, 158–171 (2017)

    Article  Google Scholar 

  23. López, J.C., Lavorato, M., Rider, M.J.: Optimal reconfiguration of electrical distribution systems considering reliability indices improvement. Int. J. Electr. Power Energy Syst. 78, 837–845 (2016)

    Article  Google Scholar 

  24. Ray, S., Bhattacharya, A., Bhattacharjee, S.: Optimal placement of switches in a radial distribution network for reliability improvement. Int. J. Electr. Power Energy Syst. 76, 53–68 (2016)

    Article  Google Scholar 

  25. Tiwary, A., Arya, L.D., Arya, R., Choube, S.C.: Inspection repair based availability optimization of distribution systems using teaching learning based optimization. J. Inst. Eng. (India) Series B, 97(3), 355–365 (2016)

    Article  Google Scholar 

  26. Arya, L.D., Choube, S.C., Arya, R., Tiwary, Aditya: Evaluation of reliability indices accounting omission of random repair time for distribution systems using Monte Carlo simulation. Int. J. Electr. Power Energy Syst. 42, 533–541 (2012)

    Article  Google Scholar 

  27. Tiwary, A., Arya, R., Choube, S.C., Arya, L.D.: Determination of optimum period between inspections for distribution system based on availability accounting uncertainties in inspection time and repair time. J. Inst. Eng. (India) Series B (Springer) 93(2), 67–72 (2012)

    Article  Google Scholar 

  28. Arya, R., Tiwary, A., Choube, S.C., Arya, L.D.: A smooth bootstrapping based technique for evaluating distribution system reliability indices neglecting random interruption duration. Int. J. Electr. Power Energy Syst. 51, 307–310 (2013)

    Article  Google Scholar 

  29. Tiwary, A., Arya, R., Choube, S.C., Arya, L.D.: Determination of reliability indices for distribution system using a state transition sampling technique accounting random down time omission. J. Inst. Eng. (India) Series B (Springer) 94(1), 71–83 (2013)

    Article  Google Scholar 

  30. Kerdphol, T., Qudaih, Y., Mitani, Y.: Optimum battery energy storage system using particle swarm optimization considering dynamic demand response for microgrids. Int. J. Electr. Power Energy Syst. 83, 58–66 (2016)

    Article  Google Scholar 

  31. Bhattacharyya, B., Raj, S.: PSO based bio inspired algorithms for reactive power planning. Int. J. Electr. Power Energy Syst. 74, 396–402 (2016)

    Article  Google Scholar 

  32. Kerdphol, T., Fuji, K., Mitani, Y., Watanabe, M., Qudaih, Y.: Optimization of a battery energy storage system using PSO for stand-alone microgrids. Int. J. Electr. Power Energy Syst. 81, 32–39 (2016)

    Article  Google Scholar 

  33. Banerjee, S., Dasgupta, K., Chanda, C.K.: Short term hydro-wind-thermal scheduling based on particle swarm optimization technique. Int. J. Electr. Power Energy Syst. 81, 275–288 (2016)

    Article  Google Scholar 

  34. Ramadan, H.S., Bendary, A.F., Nagy, S.: Particle swarm optimization algorithm for capacitor allocation problem in distribution system with wind turbine generators. Int. J. Electr. Power Energy Syst. 84, 143–152 (2017)

    Article  Google Scholar 

  35. Su, X., Masoum, A.S., Wolfs, P.J.: PSO and Improved BSFS based sequential comprehensive placement and real-time multi-objective control of delta-connected switched capacitors in unbalanced radial MV distribution networks. Int. J. Electr. Power Energy Syst. 31, 612–622 (2016)

    Google Scholar 

  36. Hashemi, S., Aghamohammadi, M.R., Sangrody, H.: Restoring desired voltage security margin based on demand response using load to source impedance ratio index and PSO. Int. J. Electr. Power Energy Syst. 96, 143–151 (2018)

    Article  Google Scholar 

  37. Huo, D., Blond, S.L., Gu, C., Wei, W., Yu, D.: Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. Int. J. Electr. Power Energy Syst. 95, 36–46 (2018)

    Article  Google Scholar 

  38. Kumar, R., Sharma, D., Sadu, A.: A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch. Int. J. Electr. Power Energy Syst. 33, 115–123 (2011)

    Article  Google Scholar 

  39. Jadoun, V.K., Gupta, N., Niazi, K.R., Swarnkar, A.: Modulated particle swarm optimization for economic emission dispatch. Int. J. Electr. Power Energy Syst. 73, 80–88 (2015)

    Article  Google Scholar 

  40. Basu, M.: Modified particle swarm optimization for nonconvex economic dispatch problems. Int. J. Electr. Power Energy Syst. 69, 304–312 (2015)

    Article  Google Scholar 

  41. Suganthan, P.N.: Particle swarm optimizer with neighbourhood operator. In: Proceeding of Congress on Evolutionary Computation, pp. 1958–1962 (1999)

    Google Scholar 

  42. Bansal, J.C., Singh P.K., Saraswat, M., Verma, A., Jadon, S. S., Abraham, A.: Inertia weight strategies in particle swarm optimization. In: Third World Congress on Nature and Biologically Inspired Computing, pp. 633–640 (2011)

    Google Scholar 

  43. Bansal, J.C., Deep, K.: A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput. 218(22), 11042–11061 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Deep, K., Bansal, J.C.: Mean particle swarm optimisation for function optimisation. Int. J. Comput. Intell. Stud. 1(1), 72–92 (2009)

    Article  Google Scholar 

  45. Bansal, J.C., Deep, K.: Optimization of directional overcurrent relay times by particle swarm optimization. In: Swarm Intelligence Symposium, pp. 1–7 (2008)

    Google Scholar 

  46. Jadon, S.S., Sharma, H., Bansal, J.C., Tiwari, R.: Self adaptive acceleration factor in particle swarm optimization. In: Proceeding of International Conference on Bio Inspired Computing: Theories and applications, pp. 325–340 (2013)

    Google Scholar 

  47. Bakkiyaraj, R.A., Kumarappan, N.: Optimal reliability planning for a composite electric power system based on Monte Carlo simulation using Particle swarm optimization. Int. J. Electr. Power Energy Syst. 47, 109–116 (2013)

    Google Scholar 

  48. Kennedy, J., Eberhart, R.: Particle Swarm optimization. In: Proceeding of IEEE international Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  49. Kennedy, J.: Bare bones particle swarms. In: Proceeding of IEEE Swarm intelligence symposium, pp. 80–87 (2003)

    Google Scholar 

  50. Vlachogiannis, J.G., Lee, K.Y.: A comparative study on particle swarm optimization for optimal steady State performance of power systems. IEEE Trans. Power Syst. 21(4), 1318–1728 (2006)

    Article  Google Scholar 

  51. Jordehi, A.R., Jasni, J., Wahab, N.A., Kadir, M.Z., Javadi, M.S.: Enhanced leader PSO (ELPSO): an new algorithm for allocating distributed TCSC’s in power system. Int. J. Electr. Power Energy Syst. 64, 771–784 (2015)

    Article  Google Scholar 

  52. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer (2005)

    Google Scholar 

  53. Su, C.T., Lii, G.R.: Reliability design of distribution systems using modified genetic algorithms. Electr. Power Syst. Res. 60, 201–206 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Tiwary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwary, A. (2019). Inspection–Maintenance-Based Availability Optimization of Feeder Section Using Particle Swarm Optimization. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 816. Springer, Singapore. https://doi.org/10.1007/978-981-13-1592-3_20

Download citation

Publish with us

Policies and ethics