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Foreword

Reservoir computing seems simple but is difficult, feels new but is old, opens hori-
zons, and is brutally limiting. I will do my best in this foreword to leave the reader
with many questions—to be answered, or maybe not, in the many chapters of this
richly filled book.

The basic principle of reservoir computing (RC) is simple. Given: a training
input signal utrain(t) paired with a desired target output signal ytrain(t). Wanted:
a filter (transducer) F which, when fed with input utrain(t), generates an output
signal y

∧train
(t) which comes close to the target ytrain(t). Approach: Step 1. Prepare

a high-dimensional dynamical system X (t), the reservoir, which can be driven
by input utrain(t) and in which many state variables xi (t) (where i = 1, . . . , N )
can be observed and recorded. Step 2. Drive this system with input utrain(t) and
record the corresponding reservoir-internal response signals xtraini (t). Step 3. Find
(train, learn, and estimate) a readout functionF which maps every recorded state
vector (xtrain1 (t), . . . , xtrainN (t)) to an output y

∧train
(t)which approximates the training

targets ytrain(t). Finding such a readout F often boils down to a simple linear
regression. Exploitation: feed new input signals u(t) to the reservoir, observe the
reservoir-internal state vectors x(t) = (x1(t), . . . , xN (t)), and compute the output
signal y

∧

(t) = F(x(t)).
This basic scheme is very versatile. One can solve temporal input-output tasks for

time series prediction, dynamical pattern generation, classification and segmentation,
control, de-noising and channel equalization, rare event monitoring, and many more.
One can apply RC to obtain practical engineering solutions in signal processing and
control, robotics, communication technologies, machine learning, and AI; one can
call upon RC models as an explanatory principle in theoretical neuroscience; and
in mathematics, one can use RC as an entry point to identify and analyze a number
of interesting phenomena in high-dimensional dynamical systems. But most impor-
tantly, one can in principle use any kind of nonlinear, high-dimensional dynamical
system for the reservoir X (t), regardless of whether it is an experimental probe of a
freshly engineered nanomaterial, a quantum dot preparation, a replica of an octopus
armmade from soft plastic and suspended in water, or a digital simulation of a neural
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vi Foreword

network all to be found in the scintillating collection of reservoirs that the reader will
find in this book.

But... the closer one becomes involved with RC, the more difficult it gets, and
if the one to embrace it in full contact, it gets almost impossibly difficult. Reser-
voirs are high-dimensional, input-driven, nonlinear, and often stochastic dynamical
systems. A full theory of reservoir dynamics would be a full theory of everything
that evolves in time. Only fragmentary insights into the unbounded phenomenal rich-
ness in general dynamical systems are currently available in mathematics, theoretical
physics and biology, or the general complex systems sciences. Compared to what we
could know about, observe in, and utilize from reservoir dynamics, we currently do
know, see, and use almost nothing. It is easy to program a recurrent neural network
with 100 neurons on a digital computer, declare it a reservoir, apply the basic RC
scheme on a simple modeling task, exclaim “it works!” and call it good. This is how
students worldwide get hooked on RC. However, when one gets pushed out of the
comfort zone of the dozen or so ever-repeated “benchmark” tasks that pervade the
RC literature, then reservoirs turn into feral beasts that take an enormous amount
of patience and experience to tame. This applies, e.g., when the data are noisy or
incomplete, have outliers or are nonstationary, have a wandering baseline or vari-
able amplitude, are high-dimensional, or have multiple spatial or temporal scales,
when stability conditions have to be guaranteed, the task demands continual online
learning, or when the input data consist of rare events spiking out of a zero base-
line. Moreover, problems arise, when there are many possible options for input and
output signal re-coding (there always are), when one’s computer allows only fast
experimentation with small reservoirs, but one wants to extrapolate to large ones, or
when one wants to automate the readout training. The promise of RC, one need not
train the reservoir, turns into a problem: one cannot train the reservoir. There is an
unlimited variability in task specifics, and there is an infinity of dynamical behav-
iors in candidate reservoir systems. In a haystack of possibilities one must find a
reservoir whose native dynamics matches the demands of the task at hand. After two
decades of RC research, we only have the faintest inklings of how to match reservoir
dynamics with task dynamics. Many of my students choose a reservoir computing
theme for their graduating thesis. I dare say that, when after much trial and error,
they ultimately arrive at the point where “it works!” they don’t understand why it
works—and neither do I.

Many contemporary RC papers that I read or review introduce their subject still
with “Reservoir computing is a new approach to train neural networks ...”. Well...
RC may be called “new” compared to Newton’s and Leibniz’s calculus, but by the
standards of the fast-paced innovation cycles in machine learning it is rather old.
The basic RC principle has been discovered and re-discovered many times, and I
continue to become aware of earlier and earlier “first” sightings. This is how it goes
with most ideas that are elementary and useful.

It is not customary to cite references in a foreword, but I take this as an opportunity
to give due credit to RC pathfinders. The earliest perception of the RC principle
that I am aware is Kirby and Day (1990), a 1-page conference abstract that was
subsequentlyworked out byKevinKirby in a paperwhere he giveswhat I consider the
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first concise and comprehensive account of the RC principle (Kirby 1991), with the
readout from the reservoir (which he called context reverberation subsystem) trained
by the perceptron learning algorithm. The problem of finding a “good” reservoir
is clearly identified, and a sentence in the Conclusion section reads like prophesy:
“This may encourage molecular electronic hardware implementations.” Both papers
remained entirely unnoticed (the single Google Scholar cite that I sawwhen I queried
this in 2017 was a self-citation). In the same year 1991, Lambert Schomaker, in
Chapter 7 of his Ph.D. thesis (Schomaker 1991) (separately published in Schomaker
(1992)), described how a target output signal can be obtained by learning a linear
readout from a random ensemble of spiking neural oscillators. I got to know about
this work by an unlikely chance: after I was appointed at the University of Groningen
in 2019, Lambert became my direct senior manager and he told me about his Ph.D.
thesis in a casual conversation. I wonder how many other casual conversations with
other senior colleaguesworldwidewould bring up similar surprises. Both Schomaker
and Kirby refer back to earlier precursor ideas in their texts—clues for further studies
in scientific archeology. The next independent discovery of RC that I know about
occurred in cognitive neuroscience. Peter F. Dominey described a multi-module
(human) brain circuit for sequence generation which included a simplified model of
prefrontal cortex as a reservoir fromwhich trainable readouts send information to the
caudate nucleus (Dominey 1995). Up to the present day, and in close collaboration
with other RC researchers, Dominey has been continuing to work out elaborate
neuro-cognitive architectures with an RC core both for neuroscience modeling and
for robotic/human-maching interaction applications. His chapter in this book gives
a summary of a 25-year-long personal research mission.

The current RC literature mostly localizes the origin of RC in the propositions
of liquid state machines by Wolfgang Maass and my echo state networks (Maass
et al. 2002; Jaeger 2001). Wolfgang and I got to know of each other at the 2001
EU Advanced Course in Computational Neuroscience at the International Center for
Theoretical Physics in Trieste, Italy, August 2001, where to our mutual surprise we
found our own ideas almost identically reflected in the respective other’s. We started
to collaborate, soon joined by Benjamin Schrauwen who coined the term “reservoir
computing” (orwas it his brilliant Ph.D. studentDavidVerstraeten? thefirst published
paper where this term was used seems to be Verstraeten et al. (2005)). Benjamin
rapidly built up an enormously productiveRCresearchgroup at theUniversity ofGent
even before he was awarded his Ph.D. degree. I think several factors came together
why reservoir computing took off only then. First, the three of us teamed up instead
of defending proprietary RC islands. Second, for the first time the mathematical
preconditions that make reservoirs functional were clearly spelled out through the
fading memory and separation property in Wolfgang’s models and the echo state
property and an analysis of a reservoir’smemory capacity in my work. Mathematical
formulae gave authority to awild-looking idea. Third, “it worked” reallywell inmany
demo tasks that met the taste and demands of the time—while training recurrent
neural networks with other then-existing learning algorithms was difficult, unstable,
and slow. The deep learning revolution superseded RC only toward the end of the
2010s when the intricacies of gradient-descent training of recurrent neural networks
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finally became mastered. Reservoir computing research receded into a niche for a
few years.

But RC research re-awakened and sprouted out again from this niche when RC
principles were adopted first in the field of optical computing (see, e.g., chapters by
Kanno et al. andDambre et al.) and swiftly also in other domains of physical reservoir
computing (surveyed in the chapter by Dale et al.). Most chapters in this book are
a testimonial to the refreshing new thrust that RC has given to the wider fields of
unconventional/in-materio/natural/... computing (I have a private list of about 15
different namings that have been branded in the last four decades or so). Materials
scientists and non-digital device engineers from the most diverse makings continue
to discover RC for themselves. As long as RC continues to be freshly discovered by
colleagues in widening circles, there is still truth in when they say, in the introductory
passages of articles, that RC is “... a new approach ...”.

Ah, before I forget: there is one little technical thing that I want to point out to
everyone who uses RC for the first time. So many neural-network-based RC papers
state in their methods section that the spectral radius (largest absolute eigenvalue) of
the network weight matrix should be less than unity to ensure the echo state property,
a necessary condition to make RC work. This is a myth. A spectral radius SR < 1 is
neither sufficient nor necessary for the echo state property (Yildiz et al. 2012), and a
value much larger than 1 often gives the best performance. Please don’t perpetuate
this myth in your work! And while I am at it: another myth is that reservoirs work
best when they are tuned to operate “at the edge of chaos”, or “close to criticality”.
First, it’s a misnomer, because the edge in question here is the edge of the echo
state property, not the edge of chaos. If a reservoir slides across this edge, it doesn’t
necessarily (even not typically) enter a chaotic regime. Second, reservoirs are input-
driven systems, and mathematicians still haven’t entirely agreed on how to define
chaos in input-driven systems. Finally, reservoirs “close to criticality” work well
only for a certain class of learning tasks—the sort of tasks which are invariably re-
iterated in articles on this subject—but reservoirs far on the stable side of that edge
work much better for many other tasks. Cramer et al. (2020) point a spotlight on
this affair. I really can’t understand why this myth remains recited so often, given
the massive counter-evidence from so many practical applications where carefully
optimized reservoirs come out sitting safe and far away from this edge.

RC has the elegance of simplicity, which may be explanation enough why it
inspires researchers in many fields. Of course, there are more substantial reasons
why RC keeps blossoming, for instance, because it connects the neuro- with the
computing sciences in stronger than purely metaphorical ways; or that it opens new
doors for theoretical analyses of high-dimensional dynamical systems; or that mate-
rials scientists today really don’t havemany alternatives tomake their unconventional
substrates “compute”.

But one should be aware that the powers of RC as a stand-alone carrier of “learn-
ing” or “computing” are decisively limited. Biological brains may be using RC in
some places and some ways—it is unlikely that they don’t because evolution will
find and keep any trick that works—but brains use many other dynamical mecha-
nisms and structuring principles and information encoding procedures as well, and I



Foreword ix

don’t think we have an idea yet even of how many. From my perspective of machine
learning,AI and theory of computing, the strongestweakness (what a nice oxymoron)
of pure RC is its inherent blindness to hierarchical multi-scale compositionality of
data structures, processes. and architectures. Here, I understand compositionality in
a strong sense which includes bidirectional interaction between higher modules or
layers and their sub-modules or lower layers. An example are planning architectures
for autonomous agents where higher planning modules generate longer-term plans
that “call” lower sub-plan modules in a top-down direction, and stay informed about
execution progress in a bottom-up direction of communication from the sub-modules.
Another example are the Boltzmann machine or Friston’s free-energy models of
neural processing where higher layers send statistical biases to lower layers, and are
informed about conditional feature distributions from below. In computer science,
the object-oriented programming paradigm is the very manifestation of bidirection-
ally effective compositionality. The top-down actions can be interpreted in a variety
of ways, for instance, as attention control, predictive context settings, or read/write
signals in working memory systems. Such top-down modulations are essential for
full-fledged cognitive information processing, but such bidirectionally effective hier-
archical cognitive architectures cannot be realized by RC alone. Additional struc-
tures and algorithms are needed to coordinate intermodule communication (as in my
attempt in Jaeger (2007) to design a hierarchical RC learning architecture that can
discover temporal features on several timescales), or additional teacher signals for
the individual modules must be created (as in Pascanu and Jaeger (2011) where we
trained a kind of parser for visual text input that had a nested grammatical struc-
ture), or additional control mechanisms must be installed to modulate the reservoir
dynamics “from above” (like conceptors (Jaeger 2017)). It is one of the strongest
strengths of today’s deep learning networks that such multi-directionally organized
architectures, for instance, neural Turing machines, can be trained by “end-to-end”
gradient descent, where the requisite local training signals are automatically gener-
ated. This said, I emphasize that RC can positively be applied with much benefit in
certain multi-scale learning tasks using uni-directionally coupled stacks of reservoirs
where lower, typically faster reservoirs connect upwards to higher, typically slower
reservoirs. Gallicchio and Micheli (in this volume) survey such architectures, which
they call deep RC systems.

RC research keeps advancing in many directions. I want to conclude with my
personal favorite challenges for the next evolutionary steps in RC research:

• Coordinate RCmodules in complex learning and information processing systems
with the aid of additional mechanisms—this theme is also highlighted in the
Conclusion of Dambre et al.’s chapter in this book.

• In physical RC, find ways to realize the readout and its training directly in the
non-digital material substrate, instead of delegating it to a digital host computer.

• Leverage the infinite dimensionality of spatially extended nonlinear excitable
media, extending the readout combination of a finite number of reservoir signals
to an infinite-dimensional integration, convolution, or field transformation. In
physical RC, one might envision spatially continuous two-layer substrates where
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the bottom layer acts as a reservoir and the top layerwould function as a continuous
version of what today are the readout weight matrices.

• Find effective ways to cope with the unpleasant properties of physical reservoirs,
such as device mismatch, parameter drift, temperature sensitivity, low numer-
ical precision and stochasticity, and partial observability. Physical reservoirs may
only become practically useful when appropriate auto-calibration or homeostatic
regulatory mechanisms are realized in combination with numerically robust and
swiftly self-adapting readout processes.

• Rigorously analyze which abstract dynamical characteristics of input and output
data and task specifications should be reflected inwhich characteristics of reservoir
dynamics. Currently available insights are mostly distilled from experimental
studies of timescale profiles or frequency spectra in input data and provide no
comprehensive guides for optimizing reservoir designs.

Many chapters in this collection include historical summaries of major RC research
strands, and all tell enticing stories about what today’s achievements are and are not.
This book lets us see where we stand and invites us to imagine where we can go
further. Being a veteran of the field, I feel enormously grateful for the massive labor
of editors and authors to plant this landmark after 30 years of a voyage that will
continue to feel fresh and young.

Herbert Jaeger
Bernoulli Institute for Mathematics

Computer Science and Artificial Intelligence
Cognitive Systems and Materials Center

(CogniGron)
University of Groningen

Groningen, The Netherlands
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Preface

Reservoir Computing: Theory, Physical Implementations, and Applications is the
first comprehensive book about reservoir computing (RC). RC was introduced in the
early 2000s as a unified framework for recurrent neural network (RNN) training; it
included a number of seminal models, such as echo-state networks (Jaeger 2001) and
liquid state machines (Maass et al. 2002). Although RC originated in computational
neuroscience and machine learning, in recent years, the use of RC has spread, and
it has been introduced into a wide variety of fields, including nonlinear dynamical
systems theory, physics, material science, biological science, and robotics (Fig. 1).
One of the major reasons for this increase in relevance of RC is its conceptual
simplicity. RC capitalizes on the nonlinear responses of a high-dimensional dynam-
ical system, referred to as the reservoir. By restricting the learning process to the
readout layer, RC resolved the difficulties and instabilities of RNN training, which
had conventionally been implemented using the method of gradient descent. Using

Fig. 1 Diagram
summarizing how each field
is connected through the
concept of RC
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dynamics
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gradient descent, all the network weights were trained, according to performance
optimization needs and available training time. The particular RC concept allows us
to exploit many “well-behaving” dynamical systems as reservoirs. This finding has
resulted in important opportunities exploiting not only standard RNN but also many
nonlinear dynamical systems and various physical dynamics found in nature as a
computational resource.

Accordingly, recent RC trends and technologies exhibit two important directions.
The first direction is to extend the framework of RC from the conventional RNN
to a more abstract setup using the terms of nonlinear dynamical systems. With this
broadened perspective, RC is not specific to the field of machine learning anymore
but can be connected to a much wider class of systems. In particular, the connec-
tion and relationship between many technical terms developed in different fields and
originating from different contexts have been revealed and bridged, which makes the
RC technique accessible to various disciplines. For instance, the echo state property,
which was originally proposed in the context of the echo-state networks, can also
be related to generalized synchronization between the input stream and the reser-
voir dynamics. These bridges prove also effective and vital to the following second
direction.

The second direction is the exploitation of physical dynamical systems as reser-
voirs; the framework for doing so is called physical reservoir computing (PRC).
Because of the rapid development of computational technologies and sensing systems
worldwide, novel schemes and devices are required to process massive amounts
of data quickly in real time. In conventional computational architectures, due to
the separation of the processing system and the memory system, there is a limit
to the information processing speed, which is called a von Neumann bottleneck.
This limit could be overcome using an approach inspired by biology or by using
a dynamical-system-based implementation that realizes information processing and
carries a memory of past input streams simultaneously; this is a typical non-von
Neumann architecture. PRC is one of the main candidates for such architectures that
researchers are currently focusing on. Many physical systems and materials have
been already suggested and implemented as reservoir computing substrates. These
systems include a wide range of physical systems exhibiting different spatiotem-
poral scales ranging from mechanical systems to optics, nanomaterials, spintronics,
and quantum many-body systems. They are expected to be the substrates for next-
generation neuromorphic devices that can process information natively at the edge
according to the spatiotemporal scale, which is often termed edge computing. The
variety of physical substrates provides a large diversity in the type of information
processing that can be implemented. It is noticeable that this inspiration of PRC is,
in fact, not a recent invention but has been around for a while since the genesis of
RC approaches. Original attempts to implement PRC can be found in the ideas of
the liquid computer (Natschläger et al. 2002) and the liquid brain (Fernando et al.
2003).

This bookpresents recent developments in the area ofRCand is sub-structured into
two major parts: theory and physical implementations. The book is a compilation of
chapters contributed by different authors, who are leading experts in their respective
fields. In detail, the book is structured as follows:
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The first part (Part I) is devoted to theoretical aspects of RC. It starts with a wide
perspective of aspects on how the real human brain processes information. In W.
Singer’s chapter, by comparing the recent system architecture of artificial intelli-
gence and the real brain comprehensively, the important role of nonlinear dynamics
in the cerebral cortex is discussed. In P. F. Dominey’s chapter, it is argued that
these dynamics generated in the cerebral cortex with structures of recurrency actu-
ally act as a reservoir. Subsequently, based on these properties of the real brain, A.
Subramoney, F. Scherr, and W. Maass propose a novel architecture that can include
meta-learning, called learning-to-learn, into the reservoir using plastic connections
of weights. Deep architectures have also been introduced in the RC framework, and
C. Gallicchio and A. Micheli provide a comprehensive overview of recent develop-
ments of deep reservoir computing. In the chapter by M. Inubushi, K. Yoshimura,
Y. Ikeda, and Y. Nagasawa, the role of common-signal-induced synchronization on
the information processing capability of the reservoir is discussed as a key to guar-
anteeing reproducible input-output relations. Finally, in the chapter by J. S. Pathak
and E. Ott, recent progress on time series forecasting of large-scale spatiotemporal
chaos introducing parallel spatial coupling in RC is presented, and the performance
improvement is discussed in detail.

The second part (from Part II to Part VII) focuses on the physical implementations
of RC, namely, PRC. M. Dale, J. F. Miller, S. Stepney, and M. Trefzer initiate the
discussion on how to classify the appropriate physical substrates for computation in
generic settings and propose a scheme andmeasures to systematically evaluate them.
PRC is then introduced in the context of mechanical systems (Part III). H. Hauser
has reviewed several case studies of PRC applications in robotics and discusses the
importance of embodiment and the effectiveness of the approach for soft robotics.
GuillaumeDion, Anouar Idrissi-El Oudrhiri, Bruno Barazani, Albert Tessier-Poirier,
and Julien Sylvestre present PRC using MEMS.

Part IV begins by focusing on neuromorphic devices. F. Hadaeghi provides a
systematic survey of neuromorphic electronic systems and their applications to RC
and summarizes future challenges. In the chapter by S. Apostel, N. D. Haynes, E.
Schöll, O. D’Huys, and D. J. Gauthier, field-programmable gate array implementa-
tions of an autonomous Boolean network for RC are demonstrated and analyzed in
detail. R. Aguilera, H. O. Sillin, A. Z. Stieg, and J. K. Gimzewski present an atomic
switch network as a substrate of RC implementations. The subsequent three chap-
ters focus on spintronics approaches (Part V). M. Riou, J. Torrejon, and F. Abreu,
et. al. present the recent development of neuromorphic applications for nanoscale
spin-torque oscillators. T. Taniguchi, S. Tsunegi, and S.Miwa, et al. analyze the infor-
mation processing capability (e.g., memory capacity) of a spin-torque oscillator as
a reservoir, and H. Nomura, H. Kubota, and Y. Suzuki demonstrate an approach that
uses a simple magnetic nano-dots array and discuss the possibility of implementing
a larger scale array as a reservoir.

Part VI concentrates on photonic reservoir computing, which exploits optical
systems as reservoirs. K. Kanno and A. Uchida demonstrate that the computa-
tional performance of a photonic reservoir can be improved by introducing a chaotic
input mask signal, and they present an implementation of a miniature size photonic
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integrated circuit. J. Dambre, A. Katumba, C. Ma, S. Sackesyn, F. Laporte, M.
Freiberger, and P. Bienstman provide a brief history of integrated photonic reser-
voirs and introduce recent approaches designed to increase the computational power
of the system.

Part VII is devoted to PRCdevelopments in the field of quantummachine learning.
In recent years, remarkable progress has been made in quantum computation and the
development of quantum computer technology is heating up worldwide. Simultane-
ously, noisy intermediate-scale quantum devices, which include a number of qubits
with no error correction capability and their applications are receiving attention
from many physicists. Part VII begins with the chapter by K. Fujii and K. Naka-
jima that introduces a framework for quantum reservoir computing (QRC) from the
basics. This chapter also introduces several approaches, such as quantum extreme
learningmachine (QELM) and quantumcircuit learning, and demonstrates emulation
tasks of chaotic attractors based on QRC. The chapter by M. Negoro, K. Mitarai,
K. Nakajima, and K. Fujii presents the first implementation of a quantum reser-
voir using nuclear magnetic resonance (NMR) ensemble systems and successfully
demonstrates QELM. The authors also discuss a future scenario for implementing
QRC using NMR ensemble systems.

Last but not the least, we note that the year 2020, in which this book was prepared,
was a difficult and challengingyear formankind in general and for the people involved
in this book in particular. Many problems arose in the face of COVID-19, and the
processes involved in creating this book were significantly delayed. During this
difficult time, all the chapter authors, the Springer editor, the collaborators, and our
families have been incredibly supportive and patient. We would like to sincerely
thank them all and acknowledge their role in making this publication possible. It is
our greatest pleasure to bring out this exciting book into the world.

Tokyo, Japan
Palma, Spain
November 2020

Kohei Nakajima
Ingo Fischer
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